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This workbook is designed to help pract
involve multiple variables, includin
topic, like how to appl

integral. s '
Prerequisites: The student should already be fluent in derivatives and integrals

Introduction

ice a variety of practical calculus skills that
g vector calculus. Each chapter focuses on one main

y the gradient operator or how to perform a center of mass

of polynomials, basic trig functions, exponentials, and logarithms.
Every chapter begins with a concise explanation of pertinent concepts, followed

by a few examples. Every example is fully solved step-by-step with explanations. The
examples should serve as a handy guide for how to solve the practice exercises. Every

exercise is fully solved at the back of the book.
Avariety of multivariable calculus skills are covered. This workbook begins with

partial differentiation and finishes with various multivariable integrals. Students will

learn:

how to take a partial derivative.

how to find the minimum and maximum values of a function of two variables.
basic properties of vectors, including the scalar and vector product.

essential properties of polar, spherical, and cylindrical coordinates.

how to apply the gradient, divergence, and curl operators.

how to integrate an expression over a path.

how to perform double and triple integrals.

how to perform surface and volume integrals.

how to perform center of mass integrals,

how to perform moment of inertia integrals.

these essential multivariable calculus skills.



1 Partial Derivatives

When taking a partial derivative of a function with respect to one variable, treat the

other independent variables as if they are constants. The symbol 0 is used (instead of

the letter d) to represent a partial derivative. For example, % represents a partial

derivative of the function f with respect to the variable x. (In contrast, % represents

a total derivative. See Chapter 2.)

: L Aaarinad (2R 0F
Example. Given z = 4x~y*, find ~ and 3y

ool d : : v
When finding 5)2;, treat the independent variable y as if it were a constant.

dz"*'g 9]
e A e 3 A2y 2.2
e x>yc =4y Fpe 4y%(3x*) = 12x“y
Similarly, when finding %, treat the independent variable x as if it were a constant.
Jdz’ "0 9]
= 4 Bny2i— 4 3 7 4 3 2 - 3
e o x*(2y) = 8x~y

Example. Given f = 3xsin¢, find % and %{-.

When finding %:—, treat the independent variable t as if it were a constant.

0 d 0
—i=—3xsint: 3sint—x = 3sint (1) = 3sint

dx> 0x ox

Similarly, when finding %, treat the independent variable x as if it were a constant.
dfc -0 : G s
=L — _3xsint = 3x—sint = 3x(cost) = 3xcost

gt~ dt at

To find a second partial derivative, take one partial derivative ata time. For example,

az ) - - .
a_xj; can be found as % (?-}:). Note that a “mixed” partial derivative 1S possible, such as
2 aZ

aZf Fl af 0 f .
_whi 90 (9r ' ——isequal to
oxo, Which means - ( ay)' For most common standard functions, 722215 €q 9y0x

except near discontinuities, in accordance with Clairaut’s theorem.




Chapter 1 - Partial Derivatives

First find 2 treating the independent variable y as if it were a constant.
ax’

0zno 107 1yages L 40/ 2 (BN 34,2
o = 6y2 —x* = 6y“(4x°) = 24x°y
0x 6x6xy arr ¢

Now find a_a_ (g—z), treating the independent variable y as if it were a constant.
X X

2
= (62) = —6—24x3y2 = 24y2-a—x3 = 24y*(3x?) = 72x%y?

ox 0x dx

6x2=5;

: e ger i
Example. Given f = x>y + x2y?, find T and .

When finding Z—i, treat the independent variable y as if it were a constant.

af a 3 2022 a 3 2a 2 2 2 2 2
Sl a =V — —x* =v(3 + 2x) = 3x°y + 2x
ax(x y + x%y?%) yaxx +y axx y(3x%) + y=(2x) y y

ox
Similarly, when finding Z—;, treat the independent variable x as if it were a constant.

af_a 3 25,2 3a Za 2 3 2 3 2
ay—@(x Yy xcye)=x 5y+x TR (1) + x2(2y) = x3 + 2x2%y

Now find the mixed second derivatives.

0%f 3 (0f\ @ 9 )
= (—) = @(szy +2xy%) = 3x?—y + 2x —y?

dydx  dy \ox dy dy
= 3x*(1) + 2x(2y) = 3x2 + 4xy
f 3 (3f\ @ 9 9
=] = — 3 2 — —_—
Oxdy dx (ay) dx (=semsy) = dx Tigt zyaxz

= 3x% + 2y(2x) = 3x2 4 4xy

Interpretation of partial derivatives: The equation z = f(x,y) represents a surface S.
The point (a, b, ¢) lieson S if ¢ = f(a, b). The intersection of the vertical plane x = a
and the surface S is the curve C1 (which is called the trace of S in the plane x = a) and
the intersection of the vertical plane y = b and the surface S is the curve C, (whichis

called the trace of S in the plane y = b). The partial derivatives af and 2L cialnarad
: 0x ay

(a, b) give the slopes of the tangent lines of the traces C, and C, at the point (a, b, ¢)
in the planesx = aandy = b,
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Chapter 1 Exercises - Part A

Directions: Perform each partial derivative with respect to the indicated variable.

Ky td =0z 0z x 0z 0z

i == finde== —. i =2 find < and &

@ Given z = ——, find—-and = @ Given z ~ find 7=and 2=
i /7, findZL and 2f O Given w = sint cosu, find W and 22
© Given f = x,/y, fin 5. and 5. : = 2

* Check your answers at the back of the book.




Chapter 1 - Partial Derivatives

Chapter 1 Exercises — Part B

Directions: Perform each partial derivative with respect to the indicated variable.

© Given g = e Inx, find%% and g%. @ Givenz = x* + 2x%y?, flnd — and 3

1 ol > : ou ou .
@ Givenu = /p2 — ¢Z, find 5p And . © Given h = In(¢2 + tw), fmd - and —.

** Check your answers at the back of the book.
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Chapter 1 Exercises — Part C

Directions: Perform each partial derivative with respect to the indicated variable.

: ZEOL UOES a%f
© Given f ==, find 73 and 7-=.

: : cr COW a%w
@ Given w = t?sin, find — and —.
at? ou?

* Check your answers at the back of the book.




Chapter 1 —Fartial /= 7=

Chapter 1 Exercises — Part D

Directions: Perform each partial derivative with respect to the indicated variables,

: i 0%z 0%z
Given z = =%, find ——and :
m i 4.7 find dyax 9xdy

® Given z = ¢*, find 2= and 22
0ydx dxdy"
|

** Check your answers at the back of the book
ook.
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2 The Chain Rule with Multiple Variables

First, recall the chain rule for a function of a single variable. If f is a function of u and

if u is a function of ¢, then a derivative of f with respect to t may be found using the
chain rule for a function of a single variable:

df df du

dt  dudt
For example, the chain rule may be applied to Esin(Stz) by identifying u = 3t* and

f = sin(3t?) = sinw. In this example, the chain rule gives:

%sm(3t2) = 3]: = (:—usm u) (: 2) = (cosu)(6t) = 6t cos(3t?)
For a function of two variables, the chain rule is more involved. If f is a function of two
independent variables, f = f(x,y), and if these independent variables, x and y, are
themselves functions of two other independent variables, x = x(s,t) and y = y(s, t),
then partial derivatives of f with respect to s and t may be found using the chain rule
for a function of two variables:
of 6f6x+§£Q g 6f6x ?la_y

9s 0xds  0yds ' ot oxot oyot
Ifthere are three or more variables, the chain rule may be generalized by adding more

terms. For example, the chain rule for a function of three variables is:
of 6f6x+6fay+6faz g_afax of 0y 0f 0z

95 " 9x0s 9yds T9z0s ' Bt oxoc oyoc ' ozor
of ofox 9fdy of oz
du  0xdu ayau 9z 0u

Example. Given z = x®y*, x = scost,and y = ssint, fll'ld— and 2 —.

Apply the chain rule:
0z 0z0x 0zdy 0, A0 3, i ankaa
aS 6xas+6yas (axx y )(%SCOSt)*-(a—y'x y )(&SSIH(I)
0

Z
ST = (3x%y*)(cost) + (4x3y>)(sint) = 3x2y*cost + 4x3y3 sint

Now plugin x = scostand y = ssint.

11




Chapter 2 - The Chain Rule with Multiple Variables

3(ssint)3sint
g—z = 3(s cos t)?(s sin t)* cos t + 4(s oS t)3(ssint)” si
S
6 cind 3
32—35 sin t cos3 t + 4s° sin* tcos3t =|7s°sin” L COS t
S

Similarly, apply the chain rule for %z
0
0z 0z0x azay O 4)(6 ) (6 3 4)(—ssint)
—scost|+(z=x"Y
3t oxot  ayat (ax" Y )\ot 0y ot
gt = (3x2y*)(=ssint) + (4x3y®)(scost) = —3xZy*ssint + 4x*y>s cost

Now plugin x = scost and y = ssint.

0z :

- —3(scost)?(ssint)*ssint + 4(s cos t)3(ssint)3scost
0z TR 2 Ty 4
a—t= —3s’sin’tcos“t + 4s’ sin°tcos* t

We can check the answers by plugging x = scostand y = ssint into z = x3y* at the
beginning and then taking each partial derivative directly.

z=x3y* = (scost)3(ssint)* = s3cos® t s*sin*t = s” sin* t cos3 t

0z . 0
— =—5s’sin*tcos3t = sin*t cos® t—s7 = |75 sint 3
T 35 SIn*tcos>t
0z% 0 d
= as7 SinC £ CoSC— s7asin4 tcos®t =|—3s7 sin% t cos? t + 457 sin3 t cos? ¢

The last step used the product rule, —pq p + q —, and single-variable chain rule.

The total derivative and total differential are based on the chain rule. For example
the total derivative and total differential for a function of two variables are

df 0fdx Bf dy 0 9
dtiasox dt ay dt Ox F)

Example. Given z = e* cos y, x = 3t + 2,and y = 4t2, find EE_

Apply the formula for the total derivative. We are not ﬁndmg — We are ﬁndlng
dt’
dz 9zdx 0zdy (6

e ot Al A (P 2act d
dt  dxdt 7 dy dt 6xe o y) [dt (365 2)] + (E e* cos y) (Et-tuz)

= e* cosy (3) — e*siny (8t) = |3e3t+2

cos(4t?) — 8te3t+2 sin(4t?)

12
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Chapter 2 Exercises — Part A

Directions: Apply the multivariable chain rule to perform each partial derivative.

j 0y 9
@ Givenz = xs\/_,x =s*+t?andy = s* — t* flndiand-a-i-.

@ Given f = Inxcosy, x = p>q? and y = p*q’, find%ﬁand ‘;—Z

: . . . ow ow
© Given w = xy?z3, x = scostsinu, y = ssintsini, and z = s cosu, find =, ==,

ow
and -

*¢ Check your answers at the back of the book.

13



Chapter 2 - The Chain Rule with Multiple Variables

Chapter 2 Exercises — Part B

Directions: Perform the indicated total derivative.

4 x3 : . 1dZ
O Givenz = X =sint,andy = cost, find =

9 Given z = secxtany, x = 1 + t2, andy =1 — t?, findZ—f.

O Givenw =e*eVInz,x =t>+3t,y =t + 2, and z = 3¢2 find ¥
; at’

++ Check your answers at the back of the book.

14




3 Extreme Values with Multiple Variables

To find the relative extrema for a function of two variables, f(x,y), follow these steps
(illustrated by the example that follows):

1. Take the first partial derivatives, 4

2.

of 9f
7 and ™

Set both first partial derivatives equal to zero: -Z—ﬁ = 0 and g—f; = 0. (Why? The

slope of the tangent plane is zero at a relative minimum or relative maximum.)
Solve for the values of x and y that make the first partial derivatives zero. Call

these x. and y.. These are the critical points. (Technically, points where first
partial derivatives do not exist are also considered to be critical points.)

! e s 80 A8 %f
Take the second partial —_
p derivatives, 322,957 379y d v

Evaluate the second partial derivatives at each pair (x, ) from Step 3 (where
the tangent plane is horizontal).

Q202 02 (O :
32352 dxoy Byor at each pair (x., y.) from Step 3. (Note that D

Evaluate D =

D[ 92 F0%k dazf)
9x2’ dydx’ dxay’ ay?

Classify each critical point (x., y.) based on the second derivative test:

is the determinant of the matrix formed by

e IfD>0and g—zx—i > 0 at (x.,y.), then f(x.,y.) is a local minimum.

2
e IfD>0and -Z;Z— < 0 at (x.,y.), then f(x., y.) is a local maximum.

e IfD < 0,then f(x.,Y.) is a saddle point.

e If D = 0, the second derivative test alone is not enough to classify the
critical point. It could be a local minimum, local maximum, or a saddle
point. More information is needed to classify the critical point.

Evaluate the function at each critical point corresponding to a local minimum

or local maximum. These are the relative (or local) minima and maxima.

To find the absolute extrema over a specified region, find the extreme values
of the function on the boundary of the region. The absolute extrema include
the largest and smallest values from Steps 8-9.

15
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Chapter 3 - Extreme Valuwn

2
m A i = x° — 6x — 8y + y2.
Example. (A) Find the relative extrema and saddle points of z y+y

- 0z 0z
First set 5. and == each equal to zero.
x oy

d =

—Z=a(x2—6x—8y+y2)=2x—6 0

ox

0z 2 =0
& 64 =18Vhd =—-8+2y

ay T (x 6x — 8y +y*)

The solutions to these equations are x = 3 and y = 4, respectively. The critical point

is (3,4). Now find the second partial derivatives.
aZZ 0 aZ 0

32 (Zx Gle= 2., 3yox ay(
0%z 0%z

by S (=] Y=t
axay = ( 8+ 2y)=10"", 3y ay( y

Compute D (which is the determinant of the second partial derivative matrix).
T
0x29y?  9xdy dyox
Evaluate D at each critical point. In this example, D = 4 is a constant; D equals 4 at
every point (x, y), including the critical point (3,4). Now apply the second derivative

Dy =@ - (0)(0)=4-0=4

2
test. In this example, D = 4 > 0 and gx—z = 2 > 0. This shows that the critical point

(3,4) corresponds to a local minimum (or relative minimum). Plug x = 3 and y = 4
into the given function to find the value of the local minimum.
Zmin = 3°—6(3)—8(4)+ (4)>=9-18-32+ 16 = —25

The function z(x, y) has a local minimum of —25 at the point (3,4, —25).
(B) Find the absolute extrema over the square 0 < x < 5and 0 < <5
Consider each edge of the square in addition to the critical point from Part (A).

e Bottom edge (y = 0): z(x,0) = x2 — 6x.

e Leftedge (x = 0):2(0,y) = -8y + y2.

e Topedge (y = 5):z(x,5) = x* — 6x — 8(5) + 52 = x2 — gy — 15.

o Rightedge (x=5):2(5y) =5 - 6(5) -8y +y> = —5-gy 1 52,
Find the extrema of each single-variable function above and compare to determine
that, along these edges, the minimum is z = —24 at (3,5) and the maximum is z = 0

at (0,0). Compare these with the answer to Part (A). The absolute minimum is the
local minimum of z = —25 at (3,4, —25) and the absolute maximum is z = 0 at (0,0,0).

16




Calculus with Multiple Variables Essential Skills Workbook

Chapter 3 Exercises - Part A

Directions: For each function, find the relative extrema, saddle points, and absolute
extrema over the indicated region.

@ z=x*+2xy — y?overthesquare —1 < x < 1and —1 sy

@ 2 = e ** ¥ over the disc x% + y? < 1.

% Check your answers at the back of the book.

e ———

17
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Chapter 3 - Extreme Values with Multiple Varia = ]

Chapter 3 Exercises - Part B

Directions: For each function, find the relative extrema, saddle points, and absolute

extrema over the indicated region.

© z = x3 — 6xy + y3 over the triangle with vertices at (0,0, (4,0), and (4,4).

O z = cosxcosyoverthesquaren < x < 2mandn < y < 2.

& Check your answers at the back of the book.

18




4 Vectors

A yector is a quantity that has both a magnitude and a direction. The magnitude of the
vector indicates how much of the quantity there is, while the direction of the vector
indicates which way it points. An example of a vector is force. If you exert a force, you
can measure both how hard you push or pull (the magnitude of the force) and which

way you push or pull (the direction of the force). Some other common vectors include
velocity, acceleration, displacement, and electric field.

A scalar is a quantity that has only a magnitude. A scalar does not have a direction. An
example of a scalar is mass. The amount of matter contained in an object does not

have a direction; it only has a magnitude. Some other common scalars include energy
and distance.

An arrow is used to represent a vector visually. The length of the arrow represents
the magnitude of the vector and the orientation of the arrow indicates the direction
of the vector. A vector is not fixed in position. Two arrows that have the same length
and the same direction represent equivalent vectors, even if the arrows are drawn in
different positions. If a vector is translated (which means to move it without rotating
it or changing its length), it is the same vector.

Placing an arrow above a quantity, like K, indicates a vector. (In a textbook, boldface
is often used instead of the arrow.) Placing double bars (or in some texts, single bars)

around the vector, like ||K|| indicates the magnitude of the vector. The magnitude of

a vector is sometimes indicated by simply removing the arrow, such that 4 and ||K||
are equivalent.

A
1]

The null vector (or zero vector), 0, is a vector with zero magnitude. The null vector
does not have a specific direction.

19



Chapter 4 - Vectors

A vector can be resolved into Cartesian components by projecting the vector onto the
x-,y-,and z-axes. The subscripts on 4,, Ay, and 4, indicate that these are components

of vector A. For a vector that lies in the xy plane,
Ay =Acosf , A, =Asinb
where 6 is the angle of the vector counterclockwise from the +x-axis. The magnitude

and direction of a 2D vector can be found from its components by:

-4 A
A=Al = ’A,Zc hA2A o110 = tans] (——y>
Ay

Look at the signs of A, and 4, to put 6 in the correct quadrant.

For a 3D vector, the magnitude of the vector is related to its components by:

A== \/A,% + A2 + A2

The direction of a 3D vector is specified using the two angles of spherical coordinates
(Chapter 7). The above formula follows from the 3D distance formula:

d = (x = 2% + (V2 = y1)? + (2, — 2,)?

A vector may be expressed in terms of its components as A = (A, Ay) if it lies in the

xy plane oras A = (4,, A, A,) ifit has three components. For example, the vector A —
(7,2) has components A, = 7 and A, = 2. Alternatively, a vector may be expressed in
terms of Cartesian unit vectors i, j,and kas A = A4,i + Ayj+ Ak A unit vector hat o
magnitude equal to one unit. The caret (*) above the vector indicates that it jg a unit
vector. The Cartesian unit vectors i, j, and k point one unit along the x-, y-, and Mot
¥ 4 o S
i = <1IOIO) ’ j = <O;1;0) /] k = (01011>
Visually, vector addition joins vectors together tip-to-tail to form a resultant ve oy
For example, A + B = R means that when A and B are joined tip-to-tail, the resultan

vector R extends from the tail of one vector to the tip of the other. According tq the

20
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arallelogram law if A and B are placed on the sides of a parallelogram, R lies along
the diagonal.
A
§ —
B

—

A
Given the magnitudes and directions of two or more vectors that lie in the xy plane,

to find the magnitude and direction of the resultant vector, follow these steps:
1. First find the components of the given vectors.
A, =Ac050,. .., . B.=BcosOp ., . ete
Ay, =Asin6, , B,=Bsin O fiaP etes
2. Add the respective components together.
Ri= A, & Byrtivion iRy =-Ay + By oo
3. Find the magnitude and direction of the resultant from its components. Look

at the signs of R, and Ry, to put 6 in the correct quadrant.

= R
R=|R]| = /R,% +RZ , Oz =tan™" (—X>
Ry

In principle, the law of cosines could be used to add vectors. However, the method
described above is more efficient when adding three or more vectors together. To add
vectors in component form, simply add respective components together:

(Ay, Ay, Az) + (By, By, B;) = (Ax + By, Ay + By, A; + By)
Working with unit vectors is equivalent:

(4, + A)j + A,K) + (Bd + Byj + B,k) = (Ax + Bi+ (4, + By)j + (4, + B,)k
The negative of a vector, —A, has the same magnitude and the opposite direction. To
find the negative of a vector, simply negate each component: A= (=A%, d s d)
To multiply a vector by a scalar, simply multiply each component by the scalar: cA =
(cA,, cA,, cA,). Vectors satisfy the following properties:

A+B=B+A , A+(B+C)=(A+B)+C=(A+C)+B
A+0=A |, 7\+(—K)=6 . 1A=A , (bo)A= b(ch)
c(A+B)=cA+cB , (b+c)A=bA+cA

21




Chapter 4 - Vectors

——

To find a unit vector in the same direction as a given vector, divide the vector by its

magnitude: A = ”—él-l. Recall that a unit vector has a magnitude of one unit: ||A|| =14

vector can be expressed as its magnitude times its unit vector: A = ||A[|A = AR (since

A= HK“) Look closely to distinguish between a vector A and a unit vector A.

In general, a vector may be a function, meaning that its components may be functions
of one or more variables. For example, A(x, y) = (4,(x,¥), A4, (x,y),A;(x,¥y)) means
that A,, Ay, and A, are each (different) functions of x and y. As another example, B(t)

= 4t?1 - 3t] has components B, (t) = 4t? and B, (t) = —3t. Vector fields, like electric
field or magnetic field, are functions of the coordinates.

Calculus may be applied to vector functions as follows:

= a5 d 3 v ds
7 CAG) = cA® T/ (DAX) = A(x)af (x)+f (X)EA(X)

L4 Ao (0 bt e d"'s avs d
E[A(x) +B)] = A + d—xB(X) ; E;A[f(x)] = EA[f(x)] €D
i /i T £

JKdtzifodt+ifAydt+f<jAzdt
i i i i

The position vector, F, is a special vector function in that the components of the position

vector are the Cartesian coordinates: ¥ = xf + y] + zk. In general, the coordinates are

time-dependent: x = x(t),y = y(t),and z = z(t). The velocity can be found by taking

a derivative of the position vector with respect to time: Vv = d—;. The acc

acceleration js 5
. . 5 . = 22
derivative of velocity with respect to time: 3 = &% — &

= — Int egl atillg aCCGlEI at -On O
dt dtZ. I : Cl
time l‘eSllltS ln the Change 1n VC]OClty:

-

t
t=0

Similarly, integrating velocity over time results in net displacement, At (whic}1 is g,
change in the position vector; itis a straight line from the initial point to the fing) Poin )e
t)-
t .
A e fi;dt

t=0

22 e
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Example. Given A = (—3,+/3), find the magnitude and direction of A
Use the equations that relate the magnitude and direction of a vector that lies in the
xy plane to its components. Note that A, = =3 and 4, = V3.

=1l = [+ 45 = |32+ (V3)' =vo 73 = VIZ = /BB = V&3 =[213

A 2] 5
Be= tan (—y) k= itaney £ 8 el %
an ek e T

Note that 6 lies in Quadrant II because A, < 0 and 4, > 0. We factored the perfect
square 4 out of V12 to put the answer in standard form: V12 = 2+/3.

Example. Ahasa magnitude of 4 and a direction of 60°, and B has a magnitude of 8

and a direction of 300°. Find the magnitude and direction of R, whereR = A +B.
Apply the formulas for vector addition where the vectors lie in the xy plane.

1
A, =AcosB, =4cos60°=4(5) =2

1
B, = Bcos 8z = 8cos300° = (5) =4

V3
A, = Asinf, = 4sin60° = 4<7> =2z

@) = —4/3

B, = Bsinfz = 8sin300° = (—7

R,=A,+B,=2+4=6
R, =A,+B,=2V3—-4/3=-2V3

R = |[R] = /R,% +RZ = \/22 +(—23) =36+ @B) = Va8 = J(16)(3) = [43

R —2/3 V3 T
Gii=tan " (721) = tan"1< E ) = tan~! (—) = (gl
X

=8 6
Note that 6, lies in Quadrant IV because R, > 0 and R, < 0. It is instructive to

compare the inverse tangents in this and the previous example. We factored the

perfect square 16 out of v/48 to put the answer in standard form: 48 = 4+/3.
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Chapter 4 — Vectors —

Bt on i iz ot af vef find 3K —2B.
Example. Given A = 5i + 2j+ kandB=31—4 + 6k, find 315 : bt
A subtr
Multiply each component of A by 3 and each component of B by 2, and then act

respective components.
34 - 28 = 3(51 + 2j + k) — 2(31 — 4 + 6k)
3K — 2B = 151 + 6] + 3k — (61 — 8] + 12Kk)

3A— 2B = (15 - 6)i + [6 — (—8)]j + (3 — 12)k

3A— 2B =91 + 14j — 9k

Example. Find the magnitude of A = 31 — 12j + 4k. Also find a unit vector parallel to A.

Use the 3D distance formula. For the unit vector, divide A by its magnitude.

A=||K||=\/A%+A§+A%=x/32+(—12)2+42=x/9+144+16=\/169=

A3zl 3 e
I&]] 13 {13eBai3= K3

Example. The velocity of an object is given by v = t2] — 6j. Find the acceleration at t =
3 and the net displacement fromt = 0 to t = 2.

Take a derivative with respect to time to find acceleration.
AV A e i
— e 2% __ 3 =._2_._ % ’:_ 1= 2
a(t) Tt (t%1- 6)) bt J 776 =2t - 0j = 2t
a3) =2(3)i=|6i
Integrate velocity to find net displacement.
t 2

2 2
ARt det= f(tzi—6f)dt=f ftzdt—6]° fdt
=0 t=0 t=0 t=0
- 2 t3 ; 2 2 23 03 0 8
AR o — 6j[t]=p = 1<?—?) = 612 =0)= 31- 12j
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Chapter 4 Exercises - Part A

Directions: Determine the indicated quantities.

' @ Find the magnitude and direction of A.

A= (-V2,-V2)

@ Find the magnitude and direction of B.
B=-i+j3

O Chasa magnitude of 6 and direction of 210°. Find the x- and y-components of G

% Check your answers at the back of the book.

——
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Chapter 4 - Vectors

Chapter 4 Exercises — Part B

Directions: Determine the indicated quantities.

O Find the magnitude of D. Also find a unit vector parallel to D.
D = 2i +jV5 — 4k

© Express the resultant of EandF in component form.

E=(7,-46) , F=(59,-8)

@ Express 2G — 5H in terms of Cartesian unit vectors.

G=4i+2j-3k , H=31-k

%+ Check your answers at the back of the book.
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Chapter 4 Exercises — Part C

Directions: Determine the indicated quantities.

@ Ahas a magnitude of 6 and a direction of 150°, and Bhasa magnitude of 12 and a
direction of 270°. Find the magnitude and direction ofﬁ, whereR = A + B.

© C has a magnitude of 4 and a direction of 210°, and D has a magnitude of 4v/3 and

a direction of 180°. Find the magnitude and direction of S, whereS =D — C.

** Check your answers at the back of the book.
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Chapter 4 — Vectors

Chapter 4 Exercises — Part D

Directions: Determine the indicated quantities.

© The position vector for an object is ¥ = iVt — 2j. Find the velocity and acceleration
of the object at t = 4.

€ The acceleration of an object is given by @ = 6tj. The initial velocity at t = 0 is 4i.
Find the velocity at t = 2 and the net displacement from¢t = 0to t = 2.

@ The velocity of an object is given by ¥ = 8isin(2t) — 4j. Find the acceleration at

t = gand the net displacement fromt = 0tot = =

+¢ Check your answers at the back of the book.
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5 Scalar and Vector Products

The scalar product (also called the dot product) between two vectors is:
A-B=A,B, +A,B, + 4,B, = ||Al|||B|| cos & = AB cos

where 6 is the (smallest) angle between the two vectors. The notation ||K|| ”ﬁ” cos 6

emphasizes that ||K|| and ||§|| are the magnitudes of the vectors, while AB cos 6 means

the exact same thing. The answer to the scalar product is always a scalar (which is a

number that does not have any direction). If two vectors are perpendicular, the scalar
product is zero. Note that 0 < 0 < .

The vector product (also called the cross product) between two vectors is:

A ~
)

_AxA
i|g.

K
S e bt
ExB=l4, A, a4, :i‘ e
B,

AxB=(4,B, — A,B,)i— (A,B, — A,B,)j + (AxB, — A,B, )k
B = (A,B, — A,B, )i+ (4,B, — 4,B,)j + (A,B, — A, B, )k
A xB = (A,B, — A,B,,A,B, — A,B,, A,B, — A,B,)
The answer to the vector product is always a vector with components (equivalent to
amagnitude and a direction). The vector product of any vector with itself equals zero:

A x A = 0. If two vectors are parallel (or antiparallel), the vector product is zero. The
magnitude of the vector product is:

|& x B|| = ||A]|||B||sin6 = AB sin 8
where 6 is the (smallest) angle between the two vectors. Note that 0 < 6 < 7.

The scalar product between two unit vectors equals one if they are parallel and zero
if they are perpendicular.

ii kil i1
e ) i-k=j-k= k-§=0

To find the vector product between two unit vectors, note thati = (1,0,0),j = (0,1,0),
and k = (0,0,1).

Pt n )
m i

e ———
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Chapter 5 - Scalar and Vector Products

N—tn)  Pete)

=kxk=

Properties of scalar and vector products 1nclude.
A-A=|&°'=4* , A-B=B-&A , 0-A=0
BT B i 07 B ey )
AxA=0 |, Kx§=—§xK, (cA) x B = c(A x B)
AXx(B+C)=AxB+AxC , (A+B)xC=AxC+BxC
A-(BxC) = (AxB)-C , Ax(BxC) =& -C)B-(&-B)C
The triple scalar product, A - (B x C), represents the volume of a parallelepiped with
A B andC along its edges.

The direction of A X B is perpendicular to the plane that contains both A and B. The

direction of A x B is determined by a right-hand rule:

e Point the extended fingers of your right hand along A

e Rotate your right forearm until you can naturally curl your fingers toward B.
When your right hand is simultaneously doing both of the first two points (so

that your uncurled fingers point toward A, but when you curl your fingers they

point toward §), the thumb of your right hand points toward A xB.

Example. Given A=2i—j+3kandB =3i+2j— 4k find A-Band A x B.
A-B=4,B,+A,B, +A,B,
A-B=B3)+-D@D+B)(-9=6-2-12=
A x B = (4,B, — A,B,)i+ (4,B, — A,B,)j + (A,B, — A,B,)k
AxE=[(-1D(9-Ii+[B)3) - @]+ (22 - -1)B3)k

AxB=(4—-6)i+(9+8)j+ (4+3)k=|-21+17+ 7k
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Example. Find the angle between A= (2,0,—-2) and B= (0,3, -3).
First find the scalar product.

A-B=A.B, +A,B, +A4,B,
A-B=(2)(0)+(0)(3)+ (-2)(-3)=0+0+6=6

Now find the magnitude of each given vector.

||K||=\/A§+A5+A§ =V22+ 02+ (-2)2=Va+ 0+ 4=V8=/(#)(2) = 2V2

||§”=\/33+3y2+3§ =02 +32+(=3)2=v0+9+9 =V18 =/(9)2) = 3V2
Finally, use the alternative formula for the scalar product.

A-B= ||K||l|§|| cos 6

6 = (2v2)(3v2) cos @

6 = 6(2)cosB

1

—2-= cos @

1 T
0=cos‘1(i)=:

Example. Given A = 31 +j + 4k, B = 2i —k,and C = 5i - j + 2k, find & x (B x C).
One way to perform this calculation is to apply one of the identities.
Ax(BxC)=(& OB - (& B)C
Ax (BxC)=[(31+]+4k)- (51— +2K)](2i-§)
— [(3i+] + 4k) - (21— R)] (5 - ] + 2K)
Ax (BxC)=[B3)5)+ D1+ @@)](2i-k)
— [(3)(2) + (1D(0) + N (-D)](51 - + 2k)
Ax(BxC)=@15-1+8)(2i—k)—(6+0—4)(51-j+ 2Kk)
Ax (BxC)=22(2i—k)—2(51-j+ 2k)
A x (B x C) = 441 — 22k — (101 - 2] + 4k)

A x (B x C) = 441 — 22k — 101 + 2j — 4k = 341 + 2j — 26k

31



Chapter 5 - Scalar and Vector Products

Chapter 5 Exercises — Part A

Directions: For each pair of vectors, find both the scalar product and vector product

@ A=51+2]—4kandB=6i-3j-k

OC=38i-35+ 6kand D = 9f — 7k

OE = (41,-2)andF = (-3,5,—2).

% Check your answers at the back of the book.
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Chapter 5 Exercises - Part B

Directions: Find the indicated quantities.

(4] A has a magnitude of 6, Bhas a magnitude of 12, and the (smallest) angle between
Aand B equals 150°. Find A-Band ||K X §||

@ Find the angle between C = 1v3 + j — 2k and D=i-jV3+2k

%+ Check your answers at the back of the book.
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Chapter 5 - Scalar and Vector Products

Chapter 5 Exercises — Part C

Directions: For each set of three vectors, find A - (ﬁ X (—f) and A X (§ X 6)

@A=4i-2j+3kB=2-3—kandC=-31+4k

@A = (62,—4),B = (40,—4),and C = (8,—4,2).

< Check your answers at the back of the book.
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6 Polar Coordinates

Any point P in the plane can be expressed using 2D polar coordinates (r, 8) as follows:

r is the distance from the origin to point P.

6 is the angle counterclockwise from the +x-axis to r.

Given 2D polar coordinates, Cartesian coordinates (x, y) can be found by:

x=rcos@ , y=rsiné

Given Cartesian coordinates, 2D polar coordinates can be found by:

r=<Jx<¥+yc - 0=tan: (%)

Some notable cases of 2D polar coordinates include:

r = 0 corresponds to the point at the origin for any value of 6.
= a is the equation for a circle with radius a centered about the origin.

0 = a is a semi-infinite ray (for r > 0) or an infinite line if r is unrestricted.

r = a cos 6 is the equation for a circle with radius % centered about (521-, 0)

r = a cos(kf), where k is an integer, is the equation for a rose with k petals if
k is odd or 2k petals if k is even.

r =1+ sinf orr =1+ cos @ is the equation for a (heart-shaped) cardioid.
r = af is a simple Archimedean spiral.

g . : : _ i
——— is the equation for a conic section, where e is the eccentricity and
¢ is the semi-latus rectum (which is the perpendicular distance from the major

axis): e > lisahyperbola, e = 1isaparabola, 0 < e < 1isan ellipse,and e =
0 is a circle with radius #.

The 2D polar unit vectors are £ and 8. At point P, if a circle centered about the origin
is drawn through P, the radial unit vector f points one unit outward away from the

origin and 0 points one unit tangent to the circle in a counterclockwise sense.
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Chapter 6 - Polar Coordinates

The 2D polar unit vectors are related to the Cartesian unit vectors by:
f=1icosf +jsind
0 = —isinf +jcos b
The top equation follows from the fact that the position vector (Chapter 4), which is
I = xi + yj in Cartesian coordinates, is simply ¥ = rf in 2D polar coordinates. Set these

equal to get rf = xi + yj, divide by r to get £ = ;i - %i, and then use x = r cos § and

Y = rsin 6. The second equation is easy to obtain by remembering that @ = ai?.

A 2D vector function (Chapter 4) that has the form A(x, V=

Ax (6, )1+ Ay (x, y)j in
A (r,0)F + Ag(r,0)0 in

esian components of the

Cartesian coordinates can be expressed in the form A(r, =

2D polar coordinates, where the polar components and Cart
vector function are related by:

A, =A,cos0 —Agsinf , A, =A,sin@ + Ag cos @
For a function of 2D polar coordinates f(r, ), when taking a partig] derivative with
respect to r, hold 6 constant, and when taking a partial derivative with
hold r constant. To find a partial derivative of f(r, 8) with respectto x o
a partial derivative of g (x, y) with respectto r or 8, apply the multivarig
(Chapter 2). Since x = r cos 6 and y = r sin 6, it follows that:

respect to 0,
'y, or to take
ble chain ryle

TES
—a—r—=§rc059 = cosH—a—;r = cos B (1) = cos @
%=%r5in6 = sin95r= sinf (1) = sin@
(—;%=aa—9rc039 =r%c059 =r(—sinf) = —rsin@
Z—gz(:—ersine =r—a—95in9 = rcosf
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B ———

. A
.Conv 2 / :
Example. Convert the point (6, 3) from polar coordinates to Cartesian coordinates.

Use the formulas for x and y. Note thatr = 6 and 6 = g .

T 1
="Pcos0 =106 _= (-):
cos 3 6 >

: 3
y =7rsinf =6sing=6<§>= 3+4/3

Example. Convert the point (—5, —5) from Cartesian coordinates to polar coordinates.
Use the formulas for r and 6. Note that x = y = —5.

r = JxZ + 32 = \[(=5)? + (=5)2 = V25 + 25 = V50 = /(25)(2) = 52

6.=tan7" (%) = tanit (——§-> =tan"(1) = S 8

— 4

Note that 6 lies in Quadrant IIl because x < 0 and y < 0.

Example. Express the 2D polar equation 7 = csc(26) in Cartesian coordinates.
Apply the trig identities csc 6 = 5_11'11_6 and sin(26) = 2sin 8 cos 6.

i 1 o 1
"= 5in(20)  2sinf cosf

Since x = r cos 6, it follows that cos & = ir‘. and

T 1 r
= - Similarly, — = -
x Y sine y

cos@

1 (x\ T 2
~100-%
2\y/ \x 2xy
Divide both sides by r and multiply both sides by 2xy.
2xy =71

Use the equation r = /x? + ¥2.
2%y = ol XE i Vo

Square both sides.

4x2y? = x% +y?
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—

Example. Express the equation x? + y? = 9 in polar coordinates. Describe the curye,
Use the equations x = rcos @ and y = rsin6.
r2cos? 6 +r?sin6 =9
r2(cos? 6 +sin?0) =9
Apply the trig identity cos? 8 + sin? 6 = 1.
nt =9
Square root both sides. Take the positive root.

r=[3]

The equation r = 3 represents a circle with a radius of 3 centered about the origin.

Example. Express the 2D polar vector A = rf — 0 in Cartesian coordinates.
Firstuse f =icosf +jsinf and ® = —isin6 +jcos@.
A=r(icos6 +jsin6) — r(—isin6 +jcos 6)

A=ircosf+jrsinf+irsind —jrcos@
Nowuse x =rcosf and y = rsin6.

A=xi+yj+yi—xj= (x + Wi+ (—x + y)j

Alternatively, use the equations to transform a vector function from polar to Cartesian

coordinates. Compare the given equation A = rf — r0 with the general formula A —
A, Tt — AgB toseethat A, = rand Ag = —r.

Ay =A,cos0 — Agsin@ =rcos@ — (—-7)sinf =x + y

Ay, =A,sinf + Agcos@ =rsinf + (-r)cosf =y — x

A=A0+A =|(x+i+(x+y)
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Chapter 6 Exercises — Part A

pirections: Convert each point from polar coordinates to Cartesian coordinates.

o) o)

Directions: Convert each point from Cartesian coordinates to polar coordinates.

O (V3.-1) O 0-3)

Directions: Express each equation in Cartesian coordinates. Describe or sketch the curve.

© r = cos(20) @r=1+sinb

Qr=1+rcosé @r=tan65ec9

“ Check your answers at the back of the book.

o
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Chapter 6 - Polar Coordinates

Chapter 6 Exercises — Part B

Directions: Express each equation in polar coordinates. Describe or sketch the curve,

0)’=1 Oy=x°

X

Directions: Express each 2D polar vector function in Cartesian coordinates.

@K:rzfsin9+r2§cose DB =fsecHd—0Bcsch

& Check your answers at the back of the book.
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7 Spherical Coordinates

Any point P can be expressed using spherical coordinates (r, 6, ¢) as follows:
o risthe distance from the origin to point P.
o 0 is the azimuthal angle counterclockwise from +x to the projection of 7 onto
the xy plane, basically the same way that 6 is defined in 2D polar coordinates.
e ¢ isthepolar (or zenith) angle between r and +z. Note: 0 < ¢ < mand 0 < 6 < 27.
Notation: Most math textbooks and instructors use 6 and ¢ backwards to most physics
textbooks and instructors. Since this is a math workbook, this workbook is using the
common math notation. If you take a physics course, 8 and ¢ will probably be used
opposite to the way they are being used in this book and in most math textbooks. Most
students who take advanced math and physics courses simultaneously experience this

inconvenience. Also, the order of the angles can differ and some texts use p instead of r.

4

Given spherical coordinates, Cartesian coordinates (x, y, z) can be found by:

x: =1 cos@sin@l Lty =risinfsing | ¥ S2i=%cos @
Given Cartesian coordinates, spherical coordinates can be found by:
s z
r=\x2+y2+z2% , 0=tan1(;) ; <p=cos“1(—)
r

A few special cases of spherical coordinates include:
* 7 = aisthe equation for a sphere with radius a centered about the origin.

* 0 = aisa semi-infinite plane containing the z-axis.

* ¢ = cis the equation for a semi-infinite cone with its apex at the origin.
The spherical unit vectors are f, 8, and @. The radial unit vector £ points one unit
Outward away from the origin, 8 is tangent to a circle parallel to the xy plane and
Ceéntered about the z-axis in a counterclockwise sense (just as in 2D polar coordinates),
and @ is tangent to a circle centered about the origin with a diameter on the Z-axis.

e R
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Chapter 7 - Spherical Coordinates

The spherical unit vectors are related to the Cartesian unit vectors by:

£ =icos@sing +]sinfsing +kcos

9= —isind +jcos@

@ =1icosfcosp +]jsinbcosg — ksin @
The top equation follows from the fact that the position vector (Chapter 4), which is
f = xi+ yj + zk in Cartesian coordinates, is simply t = rf in spherical coordinates.
Set these equal to get rf = xi + yj + zk divide by r to getT = Z‘r_i b };Ii I EIA(, and then
use x = rcosfsing,y =rsinfsing, and z = 7 COS P. The other equations are easy

to obtain by remembering that 0= a%f' (with @ = er- since we project down onto the

xy plane in order to define #) and @ = 5%?. Remember, in this book, ¢ is the polar angle.
A vector function (Chapter 4) that has the form A=A+ Ayf + A,k in Cartesian

coordinates, where A,, A,, and A, are each functions of x, y, and z, can be expressed

in the form A = A, &+ 460 + 4,@ in spherical coordinates, where:
A, = A, cos@sing — Ag sinf + Ay cos B cos@
Ay = A, sinfsin@ + Ag cosf + A, sinb cos @
A, =A.cosp — Ay sing
For a function of spherical coordinates f(r,0,9), when taking a partial derivative
with respect to one of these three variables (7, 8, or @), hold the other two constant
To find a partial derivative of f (1,6, @) with respect to x, y, or z, or to take a partial

derivative of g(x, y,z) with respect to 7, 8, or ¢, apply the multivariable chain rule
(Chapter 2). Since x = 1 COS 6sin@,y = rsinf sin @, and z = r cos @, it follows that:

Bri. 0 el ; dy 0
5;_5;rcosesm<p—cosesm<p : —é-;=arsin6’sincp=sinesing0
dzsii 0 3 dx w0
ar_arrcosgo—cosq) ) %=%rc0395in<p=—rsin93in<p
dy.. 0 0
O pu 40 i e : Zc '
= agrsm9$1n<p—rcosesm(p ] —5=59—rcosq)=0
%:—rcos@simpzrcos@cos ay_ & i
3p 09 ® %—%rsmesinq)=rsin6’cos¢

0z 0
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———

In 3D space, the direction of a vector can be s

pecified using the two angles of spherical
coordinates. For example, the vector (4,, A,, 4,) has a magnitude of \/Z,ZC + A2 + A

and a direction specified by 6 = tan™! (%y.) and ¢ = cos™? ( ﬂf:_\__z” )

Example. Convert the point (4, %,g) from spherical to Cartesian coordinates. Note: In

this book, the first angle (0) is azimuthal and the second angle (¢) is polar.

Use the formulas for x, y, and z. Note thatr = 4,6 = %rad, and ¢ = grad.

e
X =rcosfsing = 4cos—6-sin-§ = 4(—)

2z
TUL T 1\ [v3
y=rsin95in(p=4singsin§=4(§)< >= V3

s 1
z=rcosg0=4cos—§=4(-2—) =i

Example. Convert the point (—1,0,+/3) from Cartesian to spherical coordinates.

Use the formulas for r, 0, and ¢. Note thatx = —1,y = 0,and z = N3

= JF TR A = (-2 +02+ (V3) = VITOF3 =Vi=[]
0
6=tan”1(%:-)=tan'1(:§)=tan_1(0)==
Uz i BN T G
cp:cosl(;)-—cos (7)——

Note that & = 180° because x < 0 and y = 0.

Example. Express the spherical equation r = tan 6 sec ¢ in Cartesian coordinates.
Note that% = tanf and - =

= SeC Q.
cos @ @

T T
r=tan95ec<p=z—=y—

xz xz
Divide both sides of r = % by r and multiply both sides by z.

zZ = —
X
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Chapter 7 - Spherical Coordinates

ates.
Example. Express the equation x? + y% = z* in spherical coordin

= 2
Sincer? = x2 + y2 + z2, itis helpful to add z? to both sides to getx +y*+22 =2z

which becomes r? = 2z2. Divide by 72 on both sides to get 1 = 22 ;'2'- Since z =7 cos ¢,

z= o 2
it follows that% = cos ¢, such that the equation 1 = 2 = becomes 1 = 2 cos” ¢.

e e
COsE =72

Example. Express the spherical vector A = rf + r@ sin @ in Cartesian coordinates.

Use £ = 1cos 0 sin ¢ +jsin@sing +kcosp and @ = —isin @ +jcos 6.

= r(icos@sinq)+fsin95in<p+f<cos<p)+rsin(p(—fsint9 +jcos6)
K-ircos@simp+frsin65in<p+chos<p——frsin6?singa +jrcos@sing

Now use x = rcosfsing,y = rsin @ sing, and z = r cos .

—

A=xi+yj+zk—yi+xj=

(x =i+ (x +y)j + zk
Alternatively, use the equations to transform a vector function from polar to Cartesian

coordinates. Compare the given equation A = 7% + 70 sin ¢ with the general formula
A= AT+ A0+ 4 0@ toseethat A, =1, 45 = rsing, and 4, = 0.

Ay = A,cosBsing — Agsinb + A, cosecosgo—rcosesm(p

~rsingsing + 0
Ay =rcosfsing —rsinfsing =x —y

Ay = A, sinfsing + Agcosf + A, sin 6 cos ¢ —rsm@smq).,.rsm(pcose s
Ay =rsinfsing +rcosfsing =x+y
A, =Arcosp —A,sing =rcosp —0

A,=rcosgp =z

A=A0+4,j+4,k= (x—y)i+(x+y)i+zﬁl
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Chapter 7 Exercises — Part A

. pirections: Convert each point from spherical coordinates to Cartesian coordinates.

~ Note: In this book, the first angle (8) is azimuthal and the second angle (¢) is polar.

In physics texts, these angles may be swapped and/or the order may be different.

0o =(857) @ .o.0=(7%)

Directions: Convert each point from Cartesian coordinates to spherical coordinates.

0 (V3-3-2) o0(-i:%)

Directions: Express each spherical equation in Cartesian coordinates.

LE 2 nicin? 2
6tan9=sec<p — = COS 0 sin“ ¢ + cos“ @

* Check your answers at the back of the book.

; —
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Chapter 7 - Spherical Coordinates
—— .

Chapter 7 Exercises — Part B

Directions: Express each equation in spherical coordinates.

@ <%+ y? =22 Qx> +2°=25

©
N

I
=
N
e
<
I
N | R

Directions: Express the spherical vector function in Cartesian coordinates.
Note: In this book, 6 is the azimuthal angle and ¢ is the polar angle (or zenith angle).

@A =r’fcosOsing + r2@sin @ sin? ¢ + @rising

& Check your answers at the back of the book.
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8 Cylindrical Coordinates

Any point P can be expressed using cylindrical coordinates (1,0, z) as follows:
e 1.isthedistance from the z-axis to point P. Note that the cylindrical coordinate
1c is different from the spherical coordinate r in that r, is measured from the
z-axis (not the origin).

6 is the angle counterclockwise from the +x-axis, basically the same way that
0 is defined in 2D polar coordinates.

e zisthe same in cylindrical coordinates as it is in Cartesian coordinates.

Notation: Textbooks and instructors are not consistent with the notation for spherical
and cylindrical coordinates. Some use p for spherical and r for cylindrical, others use
r for spherical and p for cylindrical. Occasionally, the same symbol r is used for both.
If you use more than one book, instructor, or article, pay close attention to the notation.

Given cylindrical coordinates, Cartesian coordinates (x, y, z) can be found by:
X=T,c0s 0 yi="rsin 00 Rz =g
Given Cartesian coordinates, cylindrical coordinates can be found by:

=Xty 9=tan‘1(-§) =7

A few special cases of cylindrical coordinates include:

e 1 = a is the equation for an infinite right-circular cylinder with radius a coaxial

with the z-axis.

e 0 = ais a semi-infinite plane containing the z-axis.

e z = ar, is the equation fora semi-infinite cone with its apex at the origin.
Cylindrical unit vectors are f.and 0. At point P, if a circle centered about the z-axis is
drawn through P, the radial unit vector f. points one unit outward away from the z-
axis, 0 points one unit tangent to the circle in a counterclockwise sense, and k points
one unit along the +z-axis (which is the same as it does in Cartesian coordinates). The
cylindrical unit vectors are related to the Cartesian unit vectors by:

f.=1icosf +jsin6
0 = —isinf +jcos@
k=k
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The top equation follows from the fact that the position vector (Chapter 4), which i
t = xi+ yj + zk in Cartesian coordinates, is I = 7.f¢ + zk in cylindrical coordinates

X2 Yo
£ i+ Vi divi f. =—i+=j,and then use y =
Set these equal to get .t = xi1 + yj, divide by 7. to get r¢ 1 e =) x

1.cos 6 and y = . sin §. The second equation is easy to obtain by remembering that

A vector function (Chapter 4) that has the form A = A,i+ A,j + 4,k in Cartesian
coordinates, where 4,, Ay, and A, are each functions of x, ¥, and z, can be expressed
in the form A = Ay R + 490 + A,k in cylindrical coordinates, where:
Ay = A, cosO — Agsinf
Ay = A, _sin@ + Ay cos 8
A, =A,
For a function of cylindrical coordinates il

0,z), when taking a partial derivative
with respect to one of these three variables §

T, 8, 0r 2), hold the other two constant.
To find a partial derivative of f(r,, 6, 2) with respect to x or
derivative of g(x,y,z) with respect to 7,

(Chapter 2). Since x = r, cos § and y=1,
0x 9]

Y, or to take a partial

or 6, apply the multivarigble chain rule
sin 6, it follows that:

a—rc=a—rcrccose = cosea—rcrc =056 (1) = cos g

dy d

o . a a
0_Q=57Crcsmg = smBa—rcrc =sinf (1) = sing

0z =
a—rc-O
0x 0 0 i
0= %rc cosf = rc—a—ecosﬁ =1.(—sinf) = —1:.sing
g—z= %rc sinf@ = rc-a—gsine =1.c0s6
0z
%=0
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T

gxample. Convert the point (2,;, 3) from cylindrical to Cartesian coordinates.

Use the formulas for x, y,and z. Note thatr, = 2,0 = % rad,and z = 3.

T V3
X =7%.€080. =2 St M
> cos6 2<2>

-3

: T 1
yzrcsm9=25ing=2(_)=

2
z =13l

Example. Convert the point (1, R \/'§) from Cartesian to cylindrical coordinates.

Use the formulas for 7, 6, and z. Note thatx = 1,y = —1, and z = V/5.
=V +y2=J12+ (-2 =Vit1=[V2

S3ry -1
6=t 2Ll [N e =1 (_) — -17_ = — [=gro
ant (%) = tan~t () = tan1(-)

z-1>

Note that 8 lies in Quadrant IV because x > 0 and y < 0. The answer could alternatively

N

be expressed as 7—475 OFS 15"

Example. Express the cylindrical equation . = z tan 6 in Cartesian coordinates.
Note that% = tan@ and . = x% + y2.

757 )

2,2
Square both sides: x> + y? = yx—z— Multiply by x? on both sides: |x* + x%y? = y272|

Example. Express the equation x% 4+ y? = 4z% in cylindrical coordinates.

Since 12 = x? + y?, this is 12 = 4z%. Square root both sides: |r, = 2|z|| This is the

equation for an infinite double cone.
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Example. Express the cylindrical vector A = 1.0 + zk in Cartesian coordinates,

Firstuse ® = —isin @ +j cos 6.
A=r,(-isin6 +jcosf) + zk
A= —ir.sin@+jr.cosd +zk

Now use x = r cosf and y = rsin 6.

A=|-yi+xj+2zk

Alternatively, use the equations to transform a vector function from polar to Cartesian
coordinates. Compare the given equation A = 7.0 + zk with the general formula A=
AT+ Ag® + A,k to see that A, =0,Ag=1,and 4, = z
Ay = Ay cos0 — Agsinf = 0cosf —1,.sinf = —y
Ay = A, sinf + AgcosO = 0sinf +7,cos6 = x

A, =7

A=Ad+Aj+7k= —yi + xj + zk
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Chapter 8 Exercises - Part A

Directions: Convert each point from cylindrical coordinates to Cartesian coordinates.

059 R

3t .3 3

Directions: Convert each point from Cartesian coordinates to cylindrical coordinates.

© (-202) O (-V/6,V2,3)

Directions: Express each cylindrical equation in Cartesian coordinates.

Q:- @:ztanb=1

% Check your answers at the back of the book.

———
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Chapter 8 - Cylindrical Coordinates

Chapter 8 Exercises — Part B

Directions: Express each equation in cylindrical coordinates.

@’ +y2+22=9 0. /2177 =2

9 zZ = ny @ x2y2 - y4. = xzzz

Directions: Express the cylindrical vector function in Cartesian coordinat
ates

@® A = r2f.cos 6 — r20sin 6 + 22k

+ Check your answers at the back of the book.
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9 The Gradient

- The gradient operator, V, is 3 vector that has partial derivatives as components:

In spherical coordinates, the gradient vector is (where ¢ is polar and 6 is azimuthal):

= af XY v vof 10f
Vfi=r—+0 L g et Al
/ 6r+ rsin(p60+(pr6g0

- Note: Recall that 6 and ¢ are often backwards in math compared to physics.

In cylindrical coordinates, the gradient vector is:

af - 1.0f 5 af
6_rc+07cﬁ+k5

The different forms of the gradient vector in different coordinate systems are related

Vit

by transformations of coordinates, unit vectors, and partial derivatives. For example,

f=1icosfOsing + fsin fsinp + k cos ¢ relates the spherical unit vector f to Cartesian

1 unit vectors. To transform the partial derivatives, use the multivariable chain rule

df . df ox dof 0y . d0f 0z
(Chapter 2). For example, —= = 22== 4 2520 +————(see Chapter 7).

One way to remember the gradient in each coordinate system is to note that the arc
lengths in spherical coordinates are dr (radially outward), r sin ¢ d@ (a horizontal
circle made by projecting r down onto the xy plane), and rd (a vertical circle), and

- that the arc lengths in cylindrical coordinates are dr, (away from the z-axis), rdf (a
: . P ] st B i
horizontal circle), and dz (vertical). In any coordinate system, Vf = PR

. 8 97 here u, Uy, and u; are the coordinates, &;, &,, and &; are the unit vectors, and
h3 6u3

z a¢ ot ! 7
F = it a—r ,and hz = Ia_—| are the arc length factors, where T is the position
ouq Uz us

vector. For example, ¥ = rf in spherical and F = 7.f, + zk in cylindrical.

53




Chapter 9 - The Gradient

—

Interpretation of the gradient vector: The significance of the gradient vector, V7, is
that it gives both the rate and the direction of the fastest increase of the functiop, i

The direction of V£ at a point (o, Yo, Zo) is perpendicular to the level surface (wher,
f equals a constant) of f at (xo, Vo, Zo)- This property of the gradient vector wil] pq

utilized in Chapter 12 (see page 71).

A directional derivative, D3, is the scalar product of the gradient and a unit vector iy

the direction of A. Recall from Chapter 4 thatA = Make sure that you use the unit

] H

vector, A, and not the vector itself, K, in the formula below.
Dyf =Vf-A

Example. Find the gradient of f(x, y, z) = z2 — XV,
Use the formula for the gradient vector in Cartesian coordinates.

d =0 =50
Vf—la—f+]a§ ka—f—i—(z —xy)+] (Z —xy)+k—(z —q

Vf =|—yi— xj + 22k

Example. Find the gradient of g(,6, ¢) = r2 sin @.
Use the formula for the gradient vector in spherical coordinates.

=5 R R R ) Tog «4d R 14
=r— —_— =r— (o]
e r6r+9rsin<p69+(pr6g0 rarr ol +9TSlncp09 Sme‘*“P‘%?‘ sinf
2 r2cosf_. rZsin@ FcooD
== A s 9 ~ 0 = A S o4
Vg = 2rfsinf + T + = ®(0) =|2rfsing + =

Example. Find the directional derivative of h = x2yz in the direction of 3i — 4j.

The magnitude of A = 31— 4] is ||| = /A2 + 4 + 4Z = V32 ¥ 22557 — VO¥ 16

25 = 5, such that a unit vector alongK isA = “Ti” = % = Sf — gi
= .0h .0h lA(ah) (3¢_f¢>_36h 40h
pxh =Vr-A= (ig-+i5 +a) (51-5) = 55 G
30 4 0 6 ¢, | 2%z
P T LR = |=xyz = =x“2| F{=—= By —2x)
DAh_Sa 2yz 56yx yz+0 Sx}’ 5 5
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Chapter 9 Exercises - Part A

Directions: Determine the indicated quantity for each function.

Note: In this book, in spherical coordinates, 6 is azimuthal and ¢ is polar.

: = 8 e : SN Gl e
ﬂleenf x>y>, find Vf. eleenf o ,find Vf.
© Given f = y/x, find Vf. O Given f = r3 cos? ¢, find Vf.
© Given f = 72 cos 6 sin ¢, find Vf. O Given f = r2 — 1.z cos 6 + z2, find Vf.

@ Given f = x2 — y?, find the directional derivative in the direction of i + j.

<+ Check your answers at the back of the book.
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Chapter 9 - The Gradient

Chapter 9 Exercises - Part B

Directions: Evaluate the indicated quantity at the specified point for each function.
Note: In this book, the first angle (8) is azimuthal and the second angle () is polar. In
physics texts, these angles may be swapped and/or the order of the angles may differ.

O Given 1 = 5, evaluate vf at (2,4). © Given f = x%y?z* evaluate V)f at (3,3,2).

@ Given f = rtan 6, evaluate Vf at @ Given f = ;/—5 evaluate Vf at(—2,-2,9).

(235

@® Given f = 223, evaluate Vf at ® Given To= 2 £ evaluate v f at ( 42 4m 377:)

(3,{-, 4).

@ Given f = x3 + xyz + 23, evaluate the directional derivative in the directio
10i — 5] + 10kat (2, —1,2). i

%+ Check your answers at the back of the book.
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10 The Divergence

The divergence of a vector function is the scalar product (Chapter 5) of the gradient

operator and the vector function: V - A. The divergence operates on a vector function
and results in a scalar function (whereas the gradient operates on a scalar function
and results in a vector function).

e o8 .8 g 0A, O0A 0A
V A ( LR ) 2 % % X y z
1 ]6 +k—)- (4,i+4,]+A4.k) =1 5 Ay
In spherical and cyllndrlcal coordinates, the divergence is:
V-A A, si
(r g rsing 06 +rsm<p6g0( 0 SIN Q)
T, M e

Note: Recall that 8 and ¢ are often backwards in math compared to physics. In this

book (which uses math notation), in spherical coordinates ¢ is polar (measured from

S : P ok ) : :
+2) and 6 is azimuthal. The important point is that T e (A(p sin (p) has a partial

derivative with respect to the polar angle (¢), while m 511n - aiee has a partial derivative

with respect to the azimuthal angle (6).

d d dp i Nerid o a :
Note: The product rule, — PP P E% +q ﬁ, isinvolved in = (r?4,) and in o (A(p sin (p).

—_ — al;

The general form of the divergence is V- A = e

|52 (Rahs ) + 5= (hsha ) +

or
au1

or

,hz—az

d :
e (h1h2A3)], where u,, u,, and uz are the coordinates and h; = ,and

h.3_

*| are the arc length factors, where I is the position vector (see Chapter 9).
3

Interpretation of the divergence: The significance of the divergence, V- K, is that it
provides a measure of the net flux of field lines radiating outward from a point, which
indicates how much of the source of the field is contained at the point. The divergence

is positive if there is a net outward flux, negative if there is a net inward flux, and zero

—
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- 2 LAy

if the net flux is zero (or balanced). For example, in physics a positive chargeisa SOUrce
of electric field, creating electric field lines that radiate outward from it. As anothe,

example, in fluid flow there is a negative divergence of field lines at a sink, where th,

fluid radiates inward. IfV - A = 0, then Ais incompressible.

The Laplacian, V2, is the divergence of the gradient: V2= V - V. The Laplacian operator

may be applied to a scalar function f(x, y, z) or a vector function A(x, Y, Z).
L e e A N L A £ e L
V2 =V-Vf = (i—+'—+k—)-(i—+'—+k—) S

4 / ) L ERET 0x lay 020 9%~/ dy> - 0z2
VZA = V24,1 + V2A,] + V24,k
In spherical or cylindrical coordinates, the Laplacian of a scalar function is:

1a d 1 1
vif =——(T2—f)+ : f+ : 2 (sinﬁOﬁ)
r\ 0r/ 7r%sin?2¢9df? rZsingde do

15:¢ 9] ik 2
sz = —_(Tc—f> _a_f+.a_f

0.\ "0r.,) 12002 Qz2
Note: Again, ¢ is the polar angle and 6 is the azimuthal angle in common math notation.
For common physics notation, swap ¢ and 6 in spherical coordinates.

Example. Find the divergence of A = x?yi + xy?j + xyzk.
Use the formula for the divergence in Cartesian coordinates.

— S 0w 0AG A L 0 -
. — —_ — 2 —_— 2
Visilh 0x T dy s 0z ox’ y+ayxy +$xyz

V-K=2xy+2xy+xy= Sxy

Example. Find the divergence of B=r?t +1r2sin6sin @ 8 + r2 cos 6 .
Use the formula for the divergence in spherical coordinates.

B IOt 17 9By FE el
.B_—_r-(r r)+rsingo a0 rsinqoacp( 0Sing)

ds ox }17 130 Diisgftineie

. — (r?sinfsing) + ———(r
v rsin<p69( YT rsing og
1 4@ r?sing 0 r2cos@ 9. .
== o e —sinf + . S SIh@
S rsin @ 26" rsing d¢

% cos 6 sin ®)

)
I
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1 r cos 6
= 413 + rcos 6 + —
r sin @

VB = 4r+rc059+rcos€cotip_l

V-B=

cos @

Example. Find the Laplacian of f(x,y, z) = x2y3z2.
Use the formula for the Laplacian in Cartesian coordinates.

62f azf azf 92 92 02
Vif = P & g7 aio e T AR A )
f dx2 ay2+6z2 32> V2 +—ay2xyz +azzxyz

d d (0 d (0
Vif = — 232 et 24,352 syl s 232)
v (ax"y )+6y(6yxy Jirs (azxy

0
V2f = —(2xv322) + — 52 Soninia 2.3
f ax( xyz)+ay(3xyz)+az(2xyz)

V2f =(2y322 + 6x2yz% + 2x%y3

Example. Find the Laplacian of g(r, 6, z) = 7 cos 6.
Use the formula for the Laplacian in cylindrical coordinates.

. 19 ( 69) 19ty 00
g% Te arc arc rcz 002 = 0z?
16(62 8)+1a(ar 0) a(az 9)
Vig _Fc-gr—c rCarcrC cos 239 \30 ¢ cosS = 6er coS
148 10 : 0
= E(—a—c(rCZrc cos @) + ﬁ% —7¢ sinig ek —(0)
cos @ 6 I
V2g = (2 2) — 2a@(sm0)+0

Tc

s
= i 41, — cos B = 4 cos 6 — cos 6 =

(o}
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Chapter 10 Exercises — Part A

Directions: Find the divergence of each vector function.
Note: In this book, in spherical coordinates, 8 is azimuthal and ¢ is polar.

0 A= g xzyf + xyzf( 9 B = x4y3’i‘ i x3y4j‘ i xzyzzgﬁ
©C=ie™ +jem — ysfeor y? Iny
je xzke OD- (il e

eﬁz<"2‘H’Z:x}'—zz,yz+xz) &

Tl

2’\ -
Iccos 0 + 20 sin @

@G=rF+7rtan68 +rcosb coty § @H=7’3f+r3C059COS§0§+r3sin0(p

** Check your answers at the back of the book.
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Chapter 10 Exercises — Part B

Directions: Find the Laplacian of each scalar function.

Note: In this book, in spherical coordinates, 6 is azimuthal and @ is polar.

0 f(xy.2) = 22y°z Oyayn =2
@ r(x,y,2) =x%+y? + 22 D p(.,0,2) =r2z%sinb
®q(,0, @) =r2cos@sing QD w(r,6,0) =r*tanb cote

% Check your answers at the back of the book.

——
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e ety T

Chapter 10 Exercises — Part C

Directions: In the problems below, £ = xi + yj + zk = rf is the position vector (see
Chapters 4 and 7). First find the indicated quantity by working exclusively in spherical
coordinates and then find the indicated quantity by working exclusively in Cartesian

coordinates. Note that 7 = ||F|l. Two of the exercises involve the gradient (Chapter 9),

O OV i

Qv ®7 (D

@ v 0 v (l)

** Check your answers at the back of the book.
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11 The Curl

The curl of a vector function is the vector product (Chapter 5) of the gradient operator

and the vector function: V x A. The curl operates on a vector function and results in a

vector function (whereas the divergence results in a scalar function).

~

k

i :
yisas facria | ooty Brend il G
VXAza a— b—zzlay 0z —j ox 0z + k|0x ay
Y il A1 AR
Az A v %
VoA aAZ_aﬁ i—(aAz—an)¢+ %_GA,C £
dy oz ax az)) T \ax 9y
e Spiniey 0A, O0A 0A, 0A 04, 0A,\ -
VXA= ZRSStaneNe ( X z):\ s Al X k
( dyi 0z >l+ 9z ox ) T\ ox dy
In spherical and cylindrical coordinates, the curl is:
T e e f (0) )
r rep 710sing e . =
R 1 P P 3 r2sing rsing %
VXA=——|— — — |=| 0 d 0
r2sing |dor 0@ 00 = 5 kT
A, 1A, TAgsing & @ _
A, rd, TAgsing
i LT 1 0 : aA)A+1( 1) Sdlidy o A),\_}_l(a
VxA:rsin(p(—a-aAgsm(p—gg— o)T+= ST s et Q=
S i R
S e e
R O e
VxA=—|— — =—|=|0 & @
T aTC 00 0z a—" % a—-
Ar TCAG Az { =
£ ATc T'CAQ Az
L 1A~ @ )A 0A,, & 0A,\ _1_ _6__ i 0A,,
V><A=(;Cg@‘"5;‘19 rc+<az or, e+rc arc’"CA" 26

Note: Recall that ¢ is the polar angle and 6 is the azimuthal angle in common math

notation. For common physics notation, swap ¢ and 6 in spherical coordinates.

¢ A dr & QR e T -0 4 sin . f 1
Note: The product rule, —Pq = P gy Tax R N T

—————
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h’l él h2 é?.. h‘3 e3

i
1 |2 2 _Z | wherethe symbols
h1h2h3 aul aUZ au3

hlAl h2A2 h3A3

The general form of the curl is VXA=

are defined according to Chapters 10-11.

Interpretation of the curl: The significance of the curl, V X A, is that it provides a
measure of the net circulation of field lines at a point. An example of circulating field
lines occurs in magnetism, where a long straight current-carrying conductor creates

magnetic field lines that circulate around the wire. IfV x A = 0, then Ais irrotational.

The curl of the gradient of a scalar function is zero, V x (Vf) = 0, and the divergence

of the curl of a vector function is zero, V - (V x 1_() = 0, provided that the second-order

partial derivatives are continuous (so that f satisfies Clairaut’s theorem, which means
a2 02f 82 a2 a2 a2

that 2L = f, g f,an L= f).
0xdy 0ydx 0x0z 0z0x 0x0z 0z0x

Example. Find the curl of A = x2yi — xy?%j + xyzk

Use the formula for the curl in Cartesian coordinates.

o = (04, 0A,\. (0A, 0A,\., (04, 9A
VXA= i ( Z)' — R TR
(6y 6z>l+ 0z iz =i0x ]+<ax ay)k

— —»_ a 2 P (6 a a a
VXA= @xyz—a(—xy )]l 3 X y—a—xyz) [—(—xy )—_yx y]k
VxX=(xz+0)f+(0—yz)j+(—y —xdDk =

Xzl - yzj — (x2 + y2)k

Example. Find the curl of B = 72 cos 6 §.
Use the formula for the curl in spherical coordinates.

g i 0 d ) 1( T aB>% 9 s o
VxB= rsm<p(a—<p_895m(p_—6—53 S 0B a—rng) (

)
VxB i ) £ - (0] el 9
VXB:rsingo -(3—(p(0)51n(p—55r2c050]r+ [mcpaa( ) T(O)] [arrrzcose_a(o)]é
— — 1 a 1 a 3 )A_ 5" . i 1
VXBzrsingo(_%r cose) ;(-(-3—7:7‘ St e_TSin(p(r Slne)r+;(3r2cost9)é
VxB= r?1n9f+3r§cost9
sin @
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Chapter 11 Exercises - Part A

pirections: Find the curl of each vector function

Note: In this book, in spherical coordinates, 6 is azimuthal and ¢ is polar (or zenith).

oK=ny+xzf+xyR

OB = X3yii—x%y3

©C=(2-2)i+ (- x)j+ (x% —yHk

OD=rsinfsinpd

% Check your answers at the back of the book.
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Chapter 11 - The Curl

Chapter 11 Exercises — Part B

Directions: Find the curl of each vector function.

O A = xy2i + yz?) + zx%k

O B = x3y22%1 + x2y32% + x%y?2%k

@ C=rf.cosf +1.0sinb

©
ol
Il
ﬁ
-

< Check your answers at the back of the book.
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12 Normal and Tangent Vectors

orthogonal vectors are perpendicular to one another. The angle between orthogonal

vectors is 90°. A normal vector is orthogonal to a plane. The symbol 1l represents a

normal vector, while the symbol fi represents a unit normal (which is a unit vector in
the direction of i). A tangent vector is tangent to a curve or surface at a particular

point. The symbol T represents a tangent vector, while the symbol T represents a unit

tangent (which is a unit vector in the direction of T). The unit normal and unit tangent

are related to the corresponding vectors by fi = —and T = wa

— (Chapter 4).
= ||T”( hapter 4)

The scalar product and vector product (Chapter 5) relate to normal vectors as follows:

o SinceA-B = ||&l|||B]| cos 6, if two vectors are orthogonal, their scalar product

—_ =

iszero:A-B = 0.

e The vector product A x B is orthogonal to both AandB, (but A and B are not
necessarily orthogonal). Given two vectors, one way to find a third vector that
is orthogonal to both vectors is to find the vector product.

Two lines lying in the xy plane are orthogonal if their slopes are related by mym; =

—1.For example, y = —-g + 5 is orthogonal to y = 2x + 3 because (— %) (2)=-1.In

- . X—Xo __ Y—Yo
3D space, the symmetric equations —— = =

(a, b, c), where a, b, and c are the direction numbers of the line. Two lines along vectors
(a,b,c)and(d,e, f)are orthogonal if (a, b,c) - (d, e, f) = 0.

Z—Z .
i % represent a line along the vector

The vector (a, b, c) is normal to the plane with linear equation ax + by+cz+d=0.
If £ and £, represent two position vectors lying in the plane, then® - (¥ — £,) = 0, where
I = (a, b, c). This may also be expressed asTi*F =1 Ty. If (d, e, f) and (p, q,7) lie in
the plane, then i = (d, e, f Y x (p,q,7)is orthogonal to the plane. The angle between
two planes equals the (acute) angle between their normal vectors. Specifically, |n; - 1, |
= |6, ||||8,|| cos 6, where 6 is the angle between the planes. If the normal vectors for

two planes are parallel, meaning that 6 = 0°, then the planes are parallel.
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Chapter 12 - Normal and Tangent Vectors 2

If two planes intersect, the vector product of their normal vectors, n; X n, Is a vector

parallel to the line of intersection. The distance from a point to a plane is:
laxy + byy + czy + d|
va? + b? + 2
where (xo, y,zy) are the coordinates of the point and ax + by + ¢z + d = 0 is the

equation for the plane. The distance between two parallel planes equals the distance

from one plane to any point in the other plane.

= - - 5 d - :
If ¥(t) is a vector function of the parameter t, its derivative Er(t) is tangent to the

curve traced out by F(t). Note that d%?(t) is not tangent to the vector F at time ¢, but

is tangent to the curve that is formed by Fs tip as t increases. The unit tangent is T =
d,
_at®)

” — )” The curvature of the curve £(t) isk = ”Z_:” Since Z_i = ”%i"(t) ”’ the curvature

HEII
e H Il

Lt Sy )
vector and the parameter t is time, the equation d—i = ”d—tr(t) ” states that the speed

may be expressed as k = (For the case where T represents the position

of an object equals the magnitude of its velocity.) The curvature may also be expressed

dr_d%%
e
as k = 1= dt . For example, if an object travels in a counterclockwise circle i in the xy

I

plane centered at the origin with constant speed (this is called uniform circular motion)
starting on the +x-axis at ¢t = 0, the position of the object as a function of time is

£(t) = Roicos(wt) + Roj sin(wt), where Ry, is the radius and w is the angular speed in

radians per second. The velocity is V(t) = %f(t) = —Rowisin(wt) + Rywj cos(wt), the
speedis [[V(D)l = ”%F(t) ” = J[~Row sin(wt)]? + [Ryw cos(wt) 2 = Row (using the
identity sin? @ + cos? 6 = 1), the acceleration is alt)= %V(t) = —Rowzfcos(wt) -
R,w?jsin(wt), the magnitude of the acceleration is [|[A(t)]| = R, w? ”"(t)”z (this is
called centripetal acceleration, and applies when velocity changes dlrectlon), a unit

m L SH©  W(®) _ —Rowisin@D¥Rowjcos@d _ _fgin ity + 5 cos(wt), and
tangentisT = (o] ~ Wl T Row
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d
the curvature is: k = H ”dt[—lsm(wt)ﬂ cos(wt)]" ||_wicos(wt)_wfsm(wt)|| e l_
“d ” IVl Row Bt v Ry
The greater the curvature at a particular point on a curve, the more rapidly the curve
changes direction at that point. For a circle, the curvature equals the reciprocal of the

5|8

"IL

. e : .
radius: k = o A circle with a smaller radius has a larger value of curvature, while a

circle with a larger radius has a smaller value of curvature. For a straight line, the
curvature is exactly zero.

For the special case where the magnitude of the vector function £(t) happens to be

5 df, ; it : W,
constant, the scalar product r - d—z is zero, showing that the vector r and its derivative

-

dar Wl . - ’ . .

S are orthogonal if r(t) is constant. Here, F(t) is a vector function (not necessarily the
position vector). As mentioned previously, % is tangent to the path that the tip of F
sweeps out as the parameter t increases (but% is not necessarily tangent to the vector

ritself). In the special case that ||F(t)|| happens to be constant, % is orthogonal to the

vector F. When the vector function is a unit vector, its magnitude equals one (and is
therefore constant) for all values of ¢, which means that the derivative of a unit vector

with respect to t is orthogonal to the unit vector. For example, the unit tangent T is

A

always orthogonal to its derlvatlve ar meanmg that T - — = 0. Beware that although

T is a unit vector, i is not necessarily a unit vector. Since T and & E are orthogonal and
dt

~ =) . . . = dT
since T is tangent to the path swept out by I's tip as t increases, it follows that N = g

is a normal vector (it is called the principal normal vector). The principal normal unit

vectoris N = ”H” ”d:; Zt” Since T x N is orthogonal to both T and N, the vector B =
t

Tx N (called the bmal.w[) is orthogonal to both T and N. The unit vectors
N and B are both normal unit vectors. (There are actually an infinite number of unit

vectors perpendicular to the path swept out by the tip of F, since an infinite number
of vectors are perpendicular to a curve atany point on the curve. The normal vectors

N and B are two special normal unit vectors that are easy to find.) The vectors N and

— e —emm e
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B define the normal plane for a point along the curve swept out by the tip of £, whj],

the vectors T and N define the osculating plane. The osculating circle lies within the
osculating plane, is tangent to the curve, lies on the concave 51de of the curve (a5

indicated by the principal normal unit vector N), and has radlus —. For a plane curve

dZ
dx

[1+@)]

For the case where £(¢) is the position vector and ¢ represents time, the first derivative

y = y(x), the curvature is k = 57z and the osculating plane is the xy plane.

: : 5 _ di g it : nk
is the V610C1ty vector, v = —r, and the second derivative is the acceleration vector,a =

Z: a2 (Chapter 4).In this case, the unit tangentis T =

|<l

= ‘;’ (where v = ||[V|| is the

<l

-

. . —_ . . - d
speed), such that the velocity may be written as v = vT. The acceleration is 3 = d—v =

J

“d’f‘
[

,such that— = ” “ N =

diiei dF s ;
= vT = Td—: A (using the productrule). The curvature is k =

“ = ” , such that

<N

” ” = kv.The principal normal unitvectorisN =

xvN. The acceleration can then be expressed as a = T-—v + kv2N, which shows that

- d :
the acceleration has a tangential component a; = — (which describes how the Soecd

changes) and a centripetal component ay = xv? (which describes how the direction of
the velocity changes). The scalar product between the velocity and acceleration vectors

Lokl . ; &
isv-a= v;?, such that the tangential component of acceleration is a, = % — ¥2

dt v
di d?i drxdz
—E;frT Since K = Az dt , the normal (or centripetal) component of acceleration is ay =
|Z] E
LN I ||"— e
2 _ llat ‘dt: ar|l™ _ d|t| dﬁ = In these forms, a; and ay have similar forms;
Il

va
the distinction is that ar involves a scalar product (aT = 7) whereas ay (also called

|[¥xal| Ilvxall).
v 3

— xv?, such thatk =

a.) involves a vector product (aN =
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For the level surface f(x,y,z) = k, where k is a constant, the gradient vector Vf
evaluated at a point (x, y,, z,) lying on the surface is perpendicular to the surface at
(o, Yo» Z0), meaning that the gradient is orthogonal to the tangent plane at (x, yo, Zo).

The gradient is normal to the level surface. An equation for the tangent plane at the
point (xo, Yo, Zo) lying on the surface is

of of af
(x—xo)'a_ + () == +(Z"Zo)a_ =0
X X0,Y0,Z0 ay X0,Y0,20 z X0,Y0,20
where Z—}; means to evaluate the partial derivative at the point (xo, Yo, Zo). An
X0,Y0:20

equation for the normal line which is perpendicular to the tangent plane at (xo, ¥o, Zo)
is given by the following symmetric equations:

X —Xp 0 YEiNe & Ay
of of of
0x ay 0z
X0,Y0,Z0 ay X0,Y0,Z0 % X0,Y0,20

Example. Find a unit vector that is orthogonal to both A = i — 2j + 2k and B = 3i — 6k.
The vector product (Chapter 5) is orthogonal to both vectors.
i=AxB=(4,B,— 4,B,)i + (4,8, — 4;B,)] + (A.B, — A,B, )k
1= [(-2)(-6) — ()i + [((3) - M(=6)]j + [(1)(0) — (-2)(A)]k
= (12 - 0)i+ (6 +6)j+ (0 + 6)k = 12i + 12j + 6k
The magnitude of the vector product is:
Il = V122 + 122 + 62 = V144 + 144 + 36 = /324 = 18

A unit vector orthogonal to both Aand Bis:

~

.. 1204+12) 6k 20 Ta) iR
X 5 -

ﬁ=—) T & <5

T 18 i

Example. Write an equation for the plane that is orthogonal to the vector (2,5,8) and
which passes through the point (1,3,5).

The plane 2x + 5y + 8z + d = 0 is orthogonal to the vector (2,5,8). To solve for d, plug
in the coordinates of the point: 2(1) +5(3) +8(5) +d =2+ 15+40+d =57 + d
= Osuchthatd = —57. Theplane [2x + 5y + 8z — 57 = (

is orthogonal to the vector

(2,5,8) and passes through the point (153,50}
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Example. Find the angle between the planes 2x + Y + zvV3=4and2x —yV3+z=9
The normal vectors for these planes are Ti; = (2,1, V3)and @i, = (2,—V3,1). The scalar
productis T, - &, = (2)(2) + (1)(=V3) + (v3)(1) = 4. The magnitudes of the vectors

are JZZ +12 + (\/5)2 =+v8and |22 + (’\/5)2 + 12 = /8. The equation [H; - 1i,| =

IImi, |[|[5; ]| cos 6 is 4 = V8v8 cos 8, for which 6 = cos™* (g) =‘cosr? G) =[=|=[60°]

Example. Find the distance from the point (7,0,0) to the plane x + 2y + 2z = 1.
Write the equationasx + 2y + 2z —1 =0toseethata=1,b=c = 2,andd = —1.

VaZ + b2 + 2 VIZ + 22 + 22 VIt+4+4 V9 3

Example. Find the equation of the tangent plane and the symmetric equations for the

normal line at the point (1,1,v2) on the sphere x2 + y2 + z2 = 4.

The level surface is f (x, y, z) = 4. The partial derivatives arez—f{ = ai (x2+y%2+2%) =
X

2x, 2L =

9 af _
5 5(x2 +y? +z%) = 2y, anda—'; = —-(x* + y® + z%) = 2z. The equation of the
tangent plane at (1,1,v2) is:

5}
(x— xo)l

of
e +(}"3’o)a—

+(z- zo)a—f =0
X0,Y0,20 X0,Y0,20
(x - D2(D) + &7 - D2(D) + (2= v2)2(vZ) = 0
2x —24+2y—2+2zV2—-4=0
2x + 2y + 2zV2 = 8| which reduces to

X0,Y0,20

xX+y+2zV2 =4
The symmetric equations for the normal line at (1,1,v2) are:
XERRTA Y Yol e g
of of of

d
ax X0,Y0,Z0 y

X0,Y0,%Z0 X0,Y0:Z0
x—1 y=-1._2-v2
2(D) 2005 42(3/2)
iog - 7 i)
Lo =2 > : =2 Ve which is equivalentto |x—1=y—-1=
2

242 V2
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Example. The position vector for an objectis ¥ = —1 +t% + 2tk.
(A) What is the velocity?

LR ) dr d [t3 5
V‘d“tzd*t<§1+t21+2tk) t2i + 2tj + 2k
(B) What is the acceleration?

L dY e LA
a=_=—(t%1+2] + 2k) = 21 + 2] + 0 =[2ei + 2

(C) Find the unit tangent vector and principal normal unit vector at t = 2.

v= Wl =V + Q0P+ 2=Vttt 42 + 4= [(E2 + 22 =t2 +2

po ¥ _tir2itzk o Zi+ai+2k_ s+ai+2k_ |2+ +k
IVl b2 2 ; )BT 6 - 3
dT idii 820 2k (t*+2)4 T (tzl + 2tj + 2k) — (¢21 + 2tj + 2k) 7" +2)
dE- db 22 (t2 + 2)2
dT e 2l b2 (% 20] F 2k)(2t) 231 + 2¢% + 4ti + 4] — 231 — 4t%) — 4tk
dt. § (t2 + 2)? (t%2 + 2)?
dT 4t + (4 — 2t2)j — 4tk Y e e e
e (t2 + 2)? gl (¢2 + 2)2
dTll - VTI6tZ + 16 — 16t2 + 4t* +16t% . 2Vt +4t2H4 L 2(84H2) || 2
datl|l = (t2 + 2)2 T (2422 (t2+42)2 t2+2
S dT/dr, At (4= 2e2)j—atk il 2000 2l G 2tk
P T IR G R i e
)i -20)]-2k M-2j-ak 21§ 2k
(2) = HZLED i 6 2
(D) Find the curvature att = 2.
2 2 o [1
N e qeti el o il
et PEwesaEReatt) sy o |18

‘ n v t2 + 2 (t2m2)e

; llvxall
Tip: If £ is particularly tedious, it may be simpler to apply the formula k = ===. You
dt

||v a|| your answer for self-consistency.

can also use k = to check

— RS-
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Chapter 12 Exercises - Part A

Directions: Determine the indicated quantities.

@ Find a unit vector that is orthogonal to both A = 5] + 2j and B = 4i — 3k.

@ Write an equation for the plane that is orthogonal to the vector (6,2, —4) and which
passes through the point (5, —7,3).

€© Find a unit vector that is orthogonal to the plane that contains the points (3, —1,2)
(6,4,—2), and (0,8,4).

)

O Find the angle between the planes xV2 — zv/2 = V3 and yv2 + zv2 = /5.

@ Find the distance from the point (5,9,10) to the plane 3x — 4y + 12z = 8.

¢ Check your answers at the back of the book.
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Chapter 12 Exercises — Part B

Directions: Determine the indicated quantities.

@ Find the distance between planes 2x + y — 2z = —4 and 6x + 3y — 6z = 9, which
are parallel.

@ For the circular paraboloid 4z = 3x2 + 3y?, find the equation of the tangent plane
and the symmetric equations for the normal line at the point (2,2,6).

© Find the curvature of the parabola y = x? at the origin and at the point (¥2,2),

© Find the curvature of y = cosx at the points (0,1) and (g, O).

**» Check your answers at the back of the book.
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Chapter 12 Exercises — Part C

Directions: Determine the indicated quantities.

O The position vector for an objectis * = 10tivV3 + (10t — 5t2)]. Shon that tl.'le path otf
the object is a parabola and derive equations for the velocity, acceleration, unlt. tangen
vector, curvature, and the tangential and normal components of the acceleration. Also
evaluate each of these quantities at t = 2.

. : . - A de j g5
@ The position vector for an objectis ¥ = t2f, where —; = W is a constant and f is the

j a5 = d & 4 ;
radial unit vector in 2D polar coordinates. Show thatd—tr = w0 and = 8 = —wf. Derive

equations for the velocity, acceleration, unit tangent vector, principal normal unit
vector, curvature, and the tangential and normal components of the acceleration.

¢ Check your answers at the back of the book.
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13 Line Integrals

If an object begins at (X0, Y0, Z) and ends at (x, v, z), the arc length s equals the total
distance that the object travels, whereas the net displacement AT is a straight line from
(x0» Yor Z0) tO (x, ¥, 2). The arc length is path dependent in that it depends on the path
that the object takes, whereas the net displacement is path-independent because it is
the same regardless of how the object travels from (x, Yo, Zo) t0 (x,y, z). The arclength

and net displacement can be found from the following integrals:

i
S=fds ! Afzjd§
C i

The differential arc length ds is a scalar, whereas the differential displacement vector
d3is avector (Chapter 4). The arc length integral is over the specific curve C (or path)
that the object travels from (xo, ¥o, Zo) to (x, ¥, z), whereas the net displacement integral
depends only on the initial values (xg, Yo, Zo) and final values (x, y, z). The differential

arclengthis ds = /dx? + dy? + dz? in Cartesian coordinates, ds = Vdr? + r?d6? in

2D polar coordinates, ds = Jdrz +r2sin g d62 + r2d¢? in spherical coordinates,

and ds = VdrZ2 + r2d@? + dz? in cylindrical coordinates. These expressions simplify

in some cases. For example, for a circular arc length,  is constant such that ds = rd6

in 2D polar coordinates. When the expression doesn’t simplify to a single term, the

2
trick is to factor. For example, /dx? + dy? = |1 + (%) dx foracurve in the xy plane.

If the variables are each functions of a parameter ¢, factor out a dt. For example, in

Cartesian coordinates /dx? + dy? + dz? = (%)2 b (%)2 + (g%)z dt.

The differential displacement vector is ds = idx +j dy + k dz in Cartesian coordinates.

The net displacement integral gives the following result, regardless of the path taken.

i x 4 %
Af=fd§=ifdx+i fdy+f<fdz=(x—xo)f+(y—yo)i+(z—20)f<
Xo Yo %o

i
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The net displacement could alternatively be found via AF = F — F,, where T is the
position vector for the final position of the object and F, is the position vector for the
initial position of the object (Chapter 4). The length of the net displacement is:

8RN = v (x = %0)2 + (¥ — ¥0)2 + (z — 2)?
An integral over a specific path is called a line integral (even though the path is often
a curve). Line integrals often include a scalar or vector function in the integrand, like
fcf(x' y,z)ds or fc A(x,y,z) - ds. For an integral of the form fc A(x, y, z) - ds, use the

scalar product (Chapter 5) to rewrite the integral in terms of components:

fx(x,y,z)-dé':fodx+fAydy+fAzdz
C c C C

If the path C is a closed path (meaning that the final position coincides with the initial

position), then the integral is called a closed integral. The symbol § ds, which has a
circle on the integration symbol, indicates a closed integral.

To determine whether or not a vector field F(x, y,Z) is conservative (throughout an

open simply connected region), perform one of the following tests.

OFc _ 0Fy OF, _ 0F, daFZ_aFy

. e el . = . . . - -
o9 B oz o e if F is conservative. This is the simplest test

y ax "

when E, E, and F, are known. If F lies in the xy plane, just check if ZF" — o
fc_f:'(x, Y,Z) * ds is path-independent, meaning that it yields the same result for

every possible path if F is conservative. If this integral can be shown to give two
different answers for two different paths, this proves that Fis nonconservative.
$.F(x,,2) - d§ = 0 for every possible closed path if F is conservative. If this

integral can be shown to be nonzero for any possible closed path, this proves
that F is non-conservative,

There exists 3 scalar function f(x,y, z) such that F= Vf if F is conservative.

. 2 2
This follows from the first point such that oL (Clairaut’s theorem).
0xdy dyox

0 . . = -> .
r;e application of conservative fields is the work done by a force, W = | . F - ds, which
relat :
€S o conservatiop of energy. Another application of line integrals can be found

ectromagnetism (see Chapter 14).

\

In Maxwell’s €quations for ]

78




Calculus with Multiple Variables Essential Skills Workbook

e nh

Example. Find tf;/ezarc length and the net displacement from the origin to (4,8) along
the curve y = x*/“. Also find the magnitude of the net displacement.
perform the arc length integral. Factor out dx.

fjJ‘fj[ ]- [ e e

Plug in the given equation, y = x3

d : ‘ B s N g 2
2 1 (_ 3/2) o (_ ) 8 e
S f + dxx dx fj1+ 2x1/2 dx 1+ 2 dx
x=0 x=0

Make the substitution u = 25 + 1 such that du = de and 3du = dx. The new limits

arefromu(O)—9(0)+1—0+1—1t0u(4)— Y +1=941 =10
4 n 4 n 4 [2u3/? 4\ (2
u
9Juu9fu u9[3]_ 93(10 "
u=1 u=1 u=1

8
S %(\/1000 -1) = 2—7-(10\/T6— 1)|~ 9.073

The net displacement depends only on the initial and final points.

5
Af=fd de+1fdy—(x—xo)1+(y Yol
i

Xo

Ai-'-.:(4-—0)i+(8—0)]= 41 + 8

A7 = Or = %o)2 + O — Yo)? = /47 + 87 =16 + 64 = V80 = N
Note that ||AF|| = 4+/5 ~ 8.944 isless thans = 9.073. The arc length is always greater
than the magnitude of the net displacement, except when the path is a single straight

line segment (in which case they are equal).
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Example. Find the arc length from the origin to (3, 1) along the curve r = sin 6 in 2D

polar coordinates.
Use 2D polar coordinate formulas to find the arc length. Factor out dé.

/2
dr
= i 2 2 2 — BT 2 205 2
o= [as= i = [ [[(&) +r]a [ &) s
C c ¢

Plug in the given equation, r = sin 6.

n/2 m/2 m/2
T
f sm9 +(sm{i?)2 do= f Jcos2 6 +sin20do = j do =

Example. Evaluate fcff . d3 for F = x2y?%i + x3yj from the origin to (1,2) along the line

y = 2x and also along the route (0,0) = (1,0) = (1,2).1Is F conservative?
Express the scalar product in terms of the components F, = x%y? and E, = ry.

fﬁ-d§=fodx+JFydy=fx2y2dx+fx3ydy
C c c c

c
To perform these integrals, we need to write each integrand as a function of a single
variable that matches the differential element. For the path y = 2x, use this equation

to replace y with 2x in the first integral and to replace x with % in the second integral.

Going from (0,0) to (1,2), x varies from 0 to 1 and y varies from 0 to 2.
1 2 1 2

= - y 2 1
fF-ds= fxz(Zx)zdx+ f(z) Vady =2% fx4dx+§ fy“d
€1 y=0

x=0 y=0 x=0
= x51 1)152 4 1
F.d_’=4‘—— —_— — —_— 5_ 5 e 5_ 5
f ; [5]_+8[5] £ W Dby S Gan 0
C1 x=0 y:O
- 4 32 4 32+-8 4 4 |8
Fd_) = —=— = p— e )
Cf 5 40 5+40-:—8 5+5 5

For the second path, y = 0 from (0,0) to (1,0), while x = 1 going from (1,0) to (1,2).
1

2 2 2
Fegs 4 1 1
fF-ds= szOzdx+ f13ydy=1 fydy=ly_] =5(22—02)=§(4)=
(6} y:O

2
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h 8 i
since the line integral equals 5 for the first path and 2 for the second path, F is clearly

nonconservative. Although this suffices to show that a field is nonconservative, if the
two line integrals had been the same, it wouldn’t be satisfactory to show that the field
was conservative. One would need to integrate over every possible path, for which

there are an infinite number. The partial derivative test can be used in that case. F is

: ok 9 a2
nconservative because —= = — x2y2 = 242 ’ —2 — Zx3y = 3x2y.
no gy 2x“y doesn’t equal T ok Y y

Example. Evaluate ﬁcﬁ - ds for F = yi + xj along (0,1) » (1,1) - (0,2) = (0,1).

Perform the integral along each path: y = 1 from (0,1) to (1,1),y = —x + 2 from (1,1)

to (0,2) sincem = %:—1 = _il = —1 and the y-interceptis 2,and x = 0 from (0,2) to (0,1).

Since F = yi + xj, in this example F, = y and E, = x.

fﬁ-dE’: fodx+nydy+Jdex+nydy+fodx+nydy
c

C1 C1 Cz Cz Cs Cs
1 1 0 2 0 1
ffﬁ-dé’: fldx+ fxdy+ ydx+ jxdy+ fydx+ dey
£ x=0 y=1 x=1 y=1 x=0 y=2

The integrals where the lower and upper limits are the same equal zero, and the last
integral is zero because the integrand is zero. For the second path, use the equation
of the line to replace y with —x + 2 or to replace x withx = 2 — y.

1 0 2
fﬁﬁ-d§= Jldx+0+ f(—x+2)dx+ J(Z—y)dy+0+0
6 x=0 x=1 =1

Pay close attention to the limits, as x goes from 1 to 0 in the second path.

42 0 o 2
#Jﬁ-d§=[x]}c=o+[—-§-+2x] +l2y——2—
c x=1

e
02 2 22 12
=1—0——2—+7+2(0)—2(1)+2(2)—2(1)—7+—
14 4 1
Frdi=1+=—2+4-2—-3==
iF ds 1+2 2+2 L()]

; OFy _ @ (i e 2 ; ,
In this example e = == 1 equals —= = 7=x = 1, such that F is conservative, which

is why ¢, dg = 0.
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Example. Given F = xy?i + (x?y — 2y)j, find a scalar function f (x,y) such thatF = § f
Comparing the given expression, F = xyzf + (x%y — 2y)j, with the definition of the
gradient from Chapter 9, F = Vf = 1— +1 > L gives the following equations:
of d f 5
=F = o =—=F,=x
ax = R
Integrate %‘t = xy? over the variable x, treating y as if it were a constant. (Why? Whep
X

V.= 2y

we take the partial derivative Z—i with respect to x, we treat the independent variable

y as if it were a constant. Therefore, we do the same thing when we integrate both
sides of an equation that has one first-order partial derivative.)

2 2
fx,y) = +9)

The “constant” of integration, g(y), is not necessarily a constant; it may be a function
of y because we treated y as if it were a constant when we integrated. Next, take a
partial derivative of the above expression for f (x, y) with respect to y.

af i dg
xty + —

oy dy

Compare this to the previous expression % = x%y — 2y. By comparison, Z—g = —2y.
y
Integrate both sides of Z—i = —2y to determine that g = —y? + ¢, where the constant
of integration c really is a constant. Our final answer for f(x, y) is:
x2y?
f(x' y) = 2 B y2 +c

Tip: It is easy to check the answer. Verify that the gradient (Vf ) is equal to F.

Note: If F has three components, when integrating both sides of Z—f, the “constant” of
X

integration may have two variables, g(y, z). Next, integrating both sides of a—f, a second
oy

“constant” of integration may have one variable, h(z). Apply the partial derivatives zﬁ

and = L to narrow 9(v,z) and h(z) down to a constant (similar to this example).

Note: One application of this technique is used in physics to find potential energy. IfF
represents a conservative force (like gravitational force, but unlike friction which is

nonconservative), there exists a potential energy (U) such that F=-VU.

82




Calculus with Multiple Variables Essential Skills Workbook

Chapter 13 Exercises — Part A

Directions: Find the arc length along the given curve over the specified interval.

@y=Vi-x20<x<1 Qy=x2,0£xsg
@r=¢%0<6<m Or=60<6<1lrad

o Check your answers at the back of the book.




Chapter 13 - Line Integrals

Chapter 13 Exercises — Part B

Directions: Perform the line integral [ L F - d8 for the given field along the specified path,

Also determine whether each force is conservative or nonconservative.

O F = x*y2i + x2y%, along y = x2 from (0,0) to (24)

(6 ) F= Vx3y, alongy = 1 — x from (—1,2) to (1,0)

«» Check your answers at the back of the book.
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Chapter 13 Exercises — Part C

Directions: Perform the closed line integral gsc F - ds for the given field along the specified

path. Also determine whether each force is conservative or nonconservative.

@ F = x*y%i + x5yj, along the path (1,1) - (1,-1) » (-1,1) = (1,1)

@ F= r0, starting and finishing at (2,0) along the counterclockwise circle r = 2

& Check your answers at the back of the book.
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Chapter 13 Exercises — Part D

Directions: ' iti
ections: For each vector field, show that it is conservative and find a scalar function
f(x,y) such that F = Vf.

F-’ & e 2 2 =
(9] (2xy — 3)i + (x2 — y2)j @F = 2x°y31 + (x6y2 — y®)j

@ F = yzi + xz) + 2k

@DF =t (in 2D polar coordinates) {

¢ Check your answers at the back of the book.
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14 Surface and Volume Integrals

One way to find surface area is to integrate over the differential area element dA. In
the simple case that the surface is flat and lies entirely within the xy plane, d4 = dxdy.
The surface area S is found by integrating over dA for the region S. If the region S is
not rectangular, the integration limits for one of the coordinates (either x or y) are
functions. This point, which is typical of multiple integrals, is illustrated in the examples.

o= [

In the more general case, the surface is curved. If the surface can be expressed as z =
z(x,y), the surface area can be found with the following integral.

o= ] r () +()

One way to find volume is to integrate over the differential volume element, dV, where

dV = dxdydz. The volume V is found by integrating over dV for the region V. For the
general case, the integration limits for one or two of the coordinates are functions.

- [ffa

Surface and volume integrals often include a scalar or vector function in the integrand, .
like [f, f (x,¥,2) dA, [[ F-dA or JIf, f(x,y,2) dV.For the case ffs—ﬁ - dA, the direction

of the oriented differential area element, dK, is normal to the surface: dA = NdA, where
fl is a unit normal vector (see Chapter 12), which is orthogonal to the surface. If the
surface is curved, i is not a constant (as it will point in different directions at different
points on the surface).

For some shapes, like spheres or cylinders, the integral for surface area or volume is
simpler using 2D polar coordinates, spherical coordinates, or cylindrical coordinates.
The variables of a multiple integral can be transformed using the Jacobian, which is a
determinant formed by the partial derivatives. For an area integral in the xy plane
over x and y, where x = x(u, v) and y = y(u, v), the Jacobian for the transformation is:
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dx Ox
0(x,y) |ou ov|_0x0dy 0x0dy
o(u,v) |9y 9y ~dudv ovou
du ov
The above Jacobian allows an integral of the form [f. f(x, y) dxdy to be written as:

ﬂf(x y) dxdy = fff(u D3 2

dudv
V)

For example, x = rcos@ andy = rsinf relate the Cartesian coordinates (x,y) to the

2D polar coordinates (7, 8). The Jacobian for this transformation is:

ox - 0x 0 g i
a(x,y) |ar a6|_ b T _|cos@ -—rsinf
a(r,0) |0y ody| |@ . 0 T sin@ rcos@
37 ogl 1o 17T SInE: g Bl
o) ; : 2 P e
3. 0) = cosfrcosh — (—rsinB)sind =rcos“f +rsin“6 =r

Therefore, dA = dxdy in Cartesian coordinates is equivalent to dA = rdrd6 in 2D
polar coordinates.

[f f(x,y)dxdy = js f(r,0) rdrd6

If a surface can be expressed as z = z(x, ¥), the Jacobian can be used to transform the
surface area integral into coordinates u and v, where x = x(u,v) and y = y(u, v).

ﬂ\/1+ %), + % dxdy ﬂj1+ - +(%§>2 a(x,y)

do(u,v)
For a volume integral over x, y, and z, where x = x(u,v,w), y = y(u,v,w), and z =
z(u, v, w), the Jacobian for the transformation is:
0x 0x+i0x
ou v ow
0(x,y,z) |y dy ady
dwv,w) |ou v ow

dudv

0z 0z 07

du v ow
M ax(ayz_ﬂg) Ox (0y 0z 9y 0z\ 0x (dydz dy oz
o(u,v,w) Odu\dvow OJwadv av(auaw_%‘(‘?ﬂ)‘*aw(a—u—a—v—%a)
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The 3D Jacobian allows an integral of the form I, f Gy, z) dxdydz to be written as:

jvf f(x,y,2z) dxdydz = g J W) a(x,y,2)

dudvd
o(u,v,w) g
For example, x = r cos @ sin g, y = r sin 6 sin ¢, and z = 7 cos ¢ relate the Cartesian

coordinates (x,y,z) to the spherical coordinates (7, 6, ¢) in common math notation
(for-comtnen physics notation, swap 6 and ¢). The Jacobian for this transformation is:

0% =.0xiinDx 0

ip.= 30 _ |
or 90 dg 5rcos€sm<p 55rcos€sm<p a(prcost9sm(p

a(x,v,2) dy dy dy g 0.t . ] .
=|=— =— —=—|=|=—rsinfsing —7rsinfsing@ -a—-T'SIDBSHI(P

a(r,0,0) |or 90 ap| |or a6 @
0z - 09z 02 0 ) 0
ar. S35 T 5T oS g7 cos® a(prcoscp
a(x,y,2) cosfsing -rsin@sing 1cosbcosy
-a—'g'—= sinfsing rcosfsing rsinfcosg
(.6, ¢) cos @ 0 —7rsin@
a(x,y, 2
a—((% — _1r2cos2 0 sin3 ¢ — r2sin? @ sin® ¢ — r?sin® O sing cos? ¢ — 2 cos? @ sin @ cos” ¢
a(x,y,z : :
_6_((_x9L(;))- — —r2sin3 @ —risingcos? ¢ = —r’sing
r,o,
We used the trig identities sin” 8 + cos? @ = 1 and sin? ¢ + cos? ¢ = 1. For example,
—r2sin3 ¢ — r?singcos® ¢ = —r2sin ¢ (sin? @ — cos? ¢) = —r*sin . The volume

element dV = dxdydz in Cartesian coordinates is equivalent to dV = r?sin@ drdfde

a(x,y,z)

in spherical coordinates (since there are absolute values, ‘a(r | on the Jacobian in

the integrand).
f f f(x,y,2z) dxdydz = j f f(r,8,0)r?sin @ drdode
Vv |4

Note: Recall that ¢ is the polar (or zenith) angle and 6 is the azimuthal angle in common

math notation. For common physics notation, swap ¢ and 6 in spherical coordinates.

Cylindrical coordinates are similar to 2D polar coordinates in that dV = r.dr.dfdz.

195 [ .0t
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——

If there are two coordinates, (u, v), which allow the position vector r = x1 + yj + zk
to map every point on a surface via the transformation x = x(u,v),y =y, v),and
z = z(u, v), the surface area integral transforms according to:

ﬂ f(x,y)dxdy = g- f(u,v) ||ty X Bylldudv

S
> 20x 20y , 0z - 20x o0y Raz F 1 h f
=il =— — = — 3 e ot S —. For example, on the surface of
where £, 1au+]au+kauandrv Isihd5s ke p
a sphere centered about the origin, r = a isa constant such thatx = acos 8 sin¢,y =

asinfsing, and z = a cos ¢ allow the two spherical coordinates 8 and ¢ to map
every point on the sphere. In this case,

~

~

A~

~

i PG i j k
O 09 07l 0 sin o S e
f-(pr S 0 agoacos@smq) a(pasm sin @ 77 @
dxr0I0y o0z d : ad : . d
3% 36 39 b—eacosesm(p -a—gasmBsm(p %acosq)
i j k
Iy XTg =|acosfcosep asinbcosg —asin @

—asinfsing acosfsing 0
I, X Tg = a*icos 0 sin? ¢ + a?jsin 6 sin? ¢ + a?ksin? 6 sin @ cos @ + a?k cos? 6 sin @ Ccos
I, X Tg = a®icos 6 sin? ¢ + a?jsin O sin? ¢ + a2k sin @ cos ¢

|£, x To|| = Va* cos? 8 sin* ¢ + a*sin? 6 sin* @ + a* sin2

@ cos? @

[£p x Fo| = Va*sin* ¢ + a*sin g cos? ¢ = \/a*sinZ 4 = 42 sin @

The flux of a vector field F through aregion S on a surface is ffs F- dK._ Recall that dA =

fidA and fi is a unit normal vector (see Chapter 12), which is orthogonal to the surface.
For a curved surface, i is outward; for a flat surface, the orientation muyst be specified.
A few common examples of flux include electric flux, magnetic flux, and heat flux. If

there are two coordinates, (u, v), which allow the position vector # = xj + 9] + zk to
map every point on a surface via the transformation x = x(u,v),y = Y, v), and » —

z(u, v), the flux integral transforms according to (where X T is outward).

ﬂﬁ-dK= ffﬁ-ﬁdA=ﬂﬁ'(i"uXFv)dudv
S 5 S

Note: Some texts use dA, others use dS, and in others dA is flat while d§ js Curved,

This book uses dA to mean the general surface, whether curved or flat.
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If a surface is described by z = z(x, y), the parameters u and v are x and y, such that

- __’.‘a_x ’.‘_a_}—l Az_’.‘ "la_Z.., _'_\ax /;a_}: "_6_2__'.‘ A%
e e kax_'+kax'ry_15+]ay+kay_]+kay’and
R TR
s 1.0 gf 0Z:. az?”(
Iy XTy, = Ox| i B e
s a7 ax. = oy,
dy

In this case, the flux through the surface can be written as follows for upward orientation
(for a surface that is oriented downward, multiply by negative one):

= 0z 0z
FdA = (— 22 el )
.{.[ ff E dx b dy i s
S

If C represents the counterclockwise traversal of a simple smooth curve lying in the
xy plane and if S represents the region bounded by C, Green’s theorem relates the
line integral for the vector field F = F,i + F,j (which is often written with P and Q in
place of F; and F,) to a surface integral (for the case that F, and E, have continuous

partial derivatives):

F-d§= ¢ F.d F,d —ff e dA—ff(V’xﬁ) dA
fF'S_f"Hﬁgyy_ Bz Oy z
G & C S S

Green’s theorem is analogous to the fundamental theorem of calculus, but for double
integrals. A notable special case of Green’s theorem occurs when F, = 0 and F, = x,

i _x 2 bk |
when F, = —y and F, = 0, orwhen i, = =3 and F, = . In these cases, == ek 1;

such that [f, (—aai;’- — -aa%) dA = [[,dA = A. It follows that the following integrals are

1 1
formulas for area: 4 = . xdy = — $.ydx = Eﬁcxdy —;$xdx.

Two other theorems generalize Green’s theorem to higher dimensions in two different

ways. Stokes’s theorem (often written Stokes’ theorem) generalizes Green’s theorem

to the case where the bounding curve C is not necessarily planar, but may be 3 cey

in 3D space, and where the surface S may be a curved surface in 3D space bounded by C.

fﬁ.dgzjfﬁxﬁdA
C S
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The divergence theorem relates the net (outward) flux through a closed surface to the
divergence of the field, where the volume V is bounded by the surface S. Note that the
surface integral is closed for the divergence theorem (as the surface must be closed
in order to bound a volume), whereas the surface integral is not closed for Stokes’s
theorem (in the case of Stokes’s theorem, the line integral is closed, as the path must

be closed in order to bound a surface).

#ﬁ-dz’:mﬁﬁdv
S |4

A notable application of Stokes’s theorem and the divergence theorem can be found in

electromagnetism. Maxwell’s equations below (in SI units) describe electromagnetic
fields, where E represents the electric field and B represents the magnetic field.

- — — —_ — a — —
#E dA:WVE — denc ; fE-dhffoEdA:—aﬂs-dA

s

tﬂl

"=]Vﬂ j - d3 ﬂVdeA Holenc + €oto 57 ﬂ . dA

Gauss’s law (top left) states that the net electric flux, ®, = gfﬁs E-daA, through
any closed surface is proportional to the charge enclosed by the surface, gy,

Gauss’s law in magnetism (bottom left) states that the net magnetic flux, ®,,, =
g‘_fﬁs B- dK, through any closed surface is always zero. The reason for this is that

no magnetic monopoles (which would be the magnetic equivalent of electric
charge) have ever been observed. (What makes a magnetic field? Current does.)
Faraday’s law (top right) states that a changing magnetic flux, ®,,, = f,ﬁs B-dA,
through the area of a closed loop induces an emf in the loop (which gives rise
to an induced current in the loop). The induced electric field in _CﬁC E - ds causes
charges in the wire to accelerate, which causes the induced current.

Ampeére’s law (bottom right) states that the line integral of the magnetic field,
gSC B - d3, is proportional to the net current enclosed by the closed path, I,,,,.

The quantity &y 562 I E - dA is referred to as the displacement current, which

shows that a changing electric flux can induce a magnetic field.
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Maxwell’s equations can also be expressed in differential form (these are in S] units):

V:E= =V B =" , VXB=puJ+ L
3 V. XB = Ty 0] €olo ot
The permittivity of free space (g, = — - Where k = 9.0 X 1002 —) which is a constant

relating to electric fields, and the permeablllty of free space (o = 4m x 121 T)’ which

is a constant relating to magnetic fields, combine together to form the speed of light

. . . 'y 1
(which is an electromagnetic wave) in vacuum as follows: ¢ = T
0H0
Y
A
y =4 — x?
> X

Example. Evaluate [f x?y dA for the region between y = 4 — x2 and the x-axis.

In the region between y = 4 — x? and the x-axis, x varies from —2 to 2. For a given

value of x, y varies from 0 to 4 — x? (from the x-axis to the curve y = 4 — X))
2 4-x?
f f x%y dxdy
x=-2y=0
Since y has a function in its limit, we must integrate over y first. When integrating
over y, treat the independent variable x as if it were a constant.

4—x2

j jydydx— j [—] = fx2(4—x2)2dx

x=-2 x——2

1=l fx2(16—8x +x*)dx =8 fx dx — 4 jx dx+— jx dx

- x=-2 x==2 x=-2 x_—z
2 2 712 — 8(2)3 8(_2)3 4(25) 4(_2)5 (2)7 % (__2)7
1_11_4[] H‘3~3*5+5 2) 20
5500 "5 ()fv,—z—)2 64 04764/ 64 Bi64 1128 1128 64, 464
_8(8) 8(-8) 4(32) 4 64 128 64 64
(3) (3 L (5 T i M SR e T s |
128 256 128 128(5)(7) 256(3)(7) 128(3)(5)=4480—5376+1920= 1024
I-T~ B T T @)@ B®@ A6 105 105

——

93



Chapter 14 - Surface and Volume Integrals

s
(0,0,4)

z=4—2x—2y

(0.2.0)

(2,0,0) y=2—X

X

0z

2 2
Example. Evaluate [f nyl + (%) + (6_y) dxdy for the portion of the plane z = 4 —

2x — 2y that lies in the first octant.
The plane z = 4 — 2x — 2y intersects the xy plane along the line x + y = 2 (which can
be found by setting z = 0). When x lies between 0 and 2 and when y lies between 0

and 2 — x (where the upper value comes from solving x + y = 2 for y), the given plane
lies in the first octant.

220 5 2 3 2
L= f f xy\j1+[—(4—2x—2y)] +[—(4—2x—2y)] dx dy
dx ady
x=0y=0
2002 = 2 2= 2 2=
= f fxy\/1+(—2)2+(—2)2dxdy= f J xyV9dx dy = 3 f f xydxdy
x=0y=0 x=0y=0 x=0 y=0

Since y has a function in its limit, we must integrate over y first. When integrating

over y, treat the independent variable x as if it were a constant.
2 2=X

2 o »
e
=3 fx J ydydx =3 jx[7] dx = — Jx(Z—x)zdx
x=0 y=0 x=0 =0 2x=0
2 2 2 2
- : :
= x(4—4x+x¥)dx =6 fxdx—-6 fxzdx+zjx3dx
x=0 x=0 x=0 x=0
x?]° | 3 6(2)? 6(2)° 3(2)*
1= 8 b e +§[T] =——-0-—"1 0+ (2) -0
x=0 x=0 =0 E 3 2(4)
24 48 48
l=——— 4 — =

bt = 12 - 16 +.6,= 7]
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————

Example. Evaluate [[f zdV for the region between z = 9 — x* — y? and the xy plane.
This problems is simpler in cylindrical coordinates. Since x? + y? = 2, the region lies
between z = 9 — rZ and the xy plane. The equation z = 9 — 2 represents a circular
paraboloid with an apex of (0,0,9). The circular paraboloid intersects the xy plane at
the circle . = 3. The volume is fully mapped by letting 7. vary outward from 0 to 3, 6
vary from 0 to 27, and z vary from 0 to 9 — 2. Recall that dV = r.dr.dfdz in cylindrical

coordinates.
2w 9-1¢
f f J zr.dr.d0dz
7c=00=0 z=

Since z has a function in its limit, we must integrate over z before we integrate over
r.. When integrating over z, treat the independent variables as if they were constants.

20 10 Tc

Jffzdzrcdrcde— f fl] rcdrcdg

rc—09 0 z= rc— 06=0

I == f f(9—rc) rcdrcdé’—-— J- 1(81—187*6 +r¥) r.dr,.do
6=0

rC—OH rc=00=
3 2m 3
1 3 5 1 3 5
= > f f do (81r, — 1812 + r2) dr, = > 2n(81r, — 1812 + r2) dr,
7.=0 6=0 7c=0
2 ort S0 81r(3)? 9m(3)* 367
- (e RIS ORI GO S
2 2 6 2 2 6
1¢=0
729 7291 I 243w |243m
= e T AR

Example. Evaluate [ff, dV to find the volume of a sphere with radius a in spherical

coordinates.

Note: Unlike the previous examples, this integrand does not have a function. The answer
to this problem will be the volume of the sphere (whereas the previous problems did
not find area or volume because they had functions in the integrand). This example

will apply calculus to show that the volume of a sphere equals % na’.
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P —

pter7),0 = ¢ < mwhereas 0 < 6 < 27, The
d by visualizing the cone formed
zero, the cone shrinks down

Recall that in spherical coordinates (Cha
reason that ¢ only varies up to 7 can be understoo
by the equation ¢ = a (where aisa constant). When a is
to a semi-infinite line along the +z-axis. As a grows, the cone grows wider. When ¢

T
equals g (or 90°), it widens so much that it becomes the xy plane. As & passes = the
cone goes below the xy plane. As a continues to grow, the cone gets narrower. When

a is , the cone shrinks down to a semi-infinite line along the —z-axis. Going from 0
to 7 covers every unique possibility for ¢. Note: Recall that 8 and ¢ are backwards in

math compared to physics.

(s 2T
V= ff Jrzsimpdrded(p

r=06=0 ¢=0
Since all of the limits are constant, the order of the integration does not matter.
r31° a 2ra®
V-= ?] [6015Z0[— cos @l = ¥ (2n)(—cosm + cos0) = 3 [—(—1) + 1]
r=0
2ma’® 2ma® 4ma’
V= 1+1)= =
— 1+ =" =|—

Example. Find the flux of F = zi — xk through the sphere x2 + y2 + z2 = 4.
The two angles of spherical coordinates, (6, @), allow the position vector ¥ = xi +
yj + zk to map every point on the sphere via x = 2 cos 8 sin ¢, y = 2 sin 6 sin ¢, and
z = 2 cos ¢ (since this sphere has aradius of a = 2). Earlier in this chapter, we showed
that ¥, X g = a®icos @ sin? ¢ + a?%jsin 0 sin? ¢ + a’ksin ¢ cos ¢ for the case of a
sphere. The flux integral is ffsﬁ-dz = [[.F-fidA = [I,F- (%, x t9)dbde.

F-(f, xtg) = (21— xk) - (221 cos 8 sin? ¢ + 22]sin @ sin? ¢ + 22k sin @ cos @)

F- (f, xTg) = 4z cos 8 sin? ¢ — 4x sin ¢ cos @

20T 2w
f fzcosesinzfpded(p—zl f fxsin(pcosgodedfl’
9=0 ¢=0 6=0 =0

Sincea = 2,x = 2cos 8 sin g and z = 2 cos ¢. Observe that the two terms cancel out.

cp=ffﬁ-(f(,, x tg)d0dp = 4
S

2p - m 2n
b =4 f fZCOSQSin2¢COS¢d9d¢—4 f fzcosesinz(PCOS(ded(p=@
6=0 =0 0=0 =0
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Chapter 14 Exercises - Part A

pirections: Use a double integral to find each surface area.

@ the (smaller) area between the line @ the cardioid r = 1 + sin 8, where
y=1—xandthecirclex2+y2=1 0<6<2nm

€ the portion of z = x? — y? that lies O the (total) surface of a hemisphere
above the disc x? + y* < 4 with radius a (including its base area)

“* Check your answers at the back of the book.

—
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Chapter 14 Exercises — Part B

Directions: Use a triple integral to find each volume.

@ between z = x2 + y2 and the plane @ the portion of z = sinx cos y that lies

zZ =19 abovethesquareOstg,OSysg
@ the tetrahedron with vertices at @ the volume of a right-circular cone with
(0,0,0), (1,0,0), (0,1,0), and (0,0,1) radius a and height h

% Check your answers at the back of the book.
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Chapter 14 Exercises — Part C

Directions: Evaluate each integral over the indicated region.

© JJ; xy dA for the triangle with vertices at (1,1), (2,1), and (1,2)

s~

@ /JJ, z% dV for the hemisphere r = 4 where z > 0

7
(1) ffs xy\/l it (-g—z-)z + (2—;) dxdy for the portion of z = x? + y that lies above the
X

rectangle with vertices at (0,0,0), (2,0,0), (0,4,0), and (2,4,0)

“ Check your answers at the back of the book.

—
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Chapter 14 Exercises - Part D

Directions: Find the flux of each field through the indicated surface.

121 F = xi + yj + zk through the partof z = 6 — 3x — 2y that lies in the first octant

(an open surface)

® F = 23k through x2 + y2 + z% = 9 (a closed surface)

@ F = yi — zk through the region enclosed by z = x2 + y2and.z = 9.(a closed surface)

** Check your answers at the back of the book.
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15 Center of Mass and Moment of Inertia

The center of mass of a continuous body has the following Cartesian coordinates

1 1)
xCTI’l:—dem ) ycm=_fydm ’ Zcmz"l—fydm
m m m

where m = [ dm is the total mass of the object and the differential mass element is:

Ads along an arc length
dm = { odA on a surface
pdV in a volume

where A is the linear mass density, ¢ is the mass per unit area, and p is the density of
a three-dimensional solid. For an object that has uniform density, A, o, or p is constant
and equals the total mass of the object (m) divided by its total length, total area, or
total volume, respectively. For an object that has non-uniform density, 4, o, or p is not
a constant, but is generally given as a function of the coordinates in the problem.

The moment of inertia of a continuous body is:

r= J rédm
where 7, is the distance between the axis of rotation (which is a line about which the
object rotates or is to be rotated, usually specified in a problem) and each infinitesimal
dm of the integral (imagine dividing the body up into an infinite number of dm’s). For
a specific problem, express 7, in terms of coordinates that apply to every dm that

makes up the object (as illustrated in the examples). A larger moment of inertia means
that more torque is required to achieve a given angular acceleration.

For an integral over an arc length, recall the expressions for ds from Chapter 13. For
example, ds becomes dx for a straight line parallel to the x-axis and ds becomes rd6
for a circular arc in the xy plane with the center of the circle at the origin. For an
integral over a surface or volume, recall the expressions for dA and dV from Chapter
14. For example, dA becomes dxdy for a planar surface in the xy plane, dA becomes
rdrd6 in 2D polar coordinates, dA becomes a? sin ¢ dfd¢ for a thin sphere centered
about the origin, dV becomes dxdydz in Cartesian coordinates, dV becomes r.dr.d0dz

in cylindrical coordinates, and dV becomes 1% sin ¢ drdfd¢ in spherical coordinates.

———

101



Chapter 15 - Center of Mass and Moment of Inertia

—

Example. Find the center of mass of a thin rod lying on the x-axis with endpoints at
the origin and (L, 0) if the rod has non-uniform density 2 = kx, where k is a constant,

Express the final answer in terms of L only.

The center of mass integral can be performed starting with a series of substitutions,
It pays to do these substitutions carefully one step ata time (otherwise, it is easy to
drop an important factor along the way). For a long thin rod, dm = Ads. For a straight
rod along the x-axis, ds = dx. For a non-uniform rod, it would be a mistake to pull 2

out of the integral; instead, we must use the equation 4 = kx given in the problem.

L L L
1 it 1 i b k
xcmz;n—fxdm=afx/1dszajxldx=;1-fx(kx)dx=-n7fx2dx
x=0 x=0 x=0

T e R e W
fom |2 x=0_m SRy T

To eliminate k and m from the answer, perform the integral m = [ dm using the same
substitutions as before.

L

f kL?

L L L
2
m=Jdm=Jlds= jldx= kxdx:kfxdx=k[x7} =T
x=0 x=0 x=0 x=0

Isolate k in the above equation to see thatZL—z1 = k. Plug this into the equation for x,y,.

KLl ot
3m I123m |3

If you think about the answer, it should make sense. If the rod were uniform, it would

xcm =

L :
have a center of mass at (E’ O). Since the rod has non-uniform density A = kx, which

is proportional to x, there is less mass near the origin and more mass near the other

2r. L : :
end. The answer Eals greater than = which agrees with this observation.

Example. A uniform rod lies on the x-axis with endpoints at the origin and (L, 0). The
rod will rotate about an axis that is parallel to the y-axis and which passes through

(—i—, 0). Find the moment of inertia of the rod about this axis. Express the answer in

terms of the mass of the rod and L only.
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: ————— PT'_L
—————————— f—---»x
(0,0) ! =3 (L, 0)
: dm
VL
<

In the figure above, the axis of rotation is the vertical dashed line where x = % Since

the origin lies at the left end of the rod, x is measured from the origin to dm, whereas

r, is measured from the axis of rotation to dm. In this example, r, = x — % (Since r;

will get squared in the integral, it doesn’t matter whether we use x — g or g —x.yFor

arod, dm = Ads. For a straight rod along the x-axis, ds = dx. For a uniform rod, 1 =

-723 is a constant (equal to the mass per unit length).

= fiam= e < [ (oL @l [ (= e

x=0 x=0

l—mL3(4 6+3)_ Lz(l)_mL2
7 e tmE i Sl =

Example. One-half of a solid disc with radius a lies in the xy plane as shown below.

Find its center of mass. Express the final answer in terms of a only.
VA

dm
m

e
) > X

For a solid disc, dm = adA. Itis convenient to use 2D polar coordinates: dA = rdrd6.

For a uniform solid disc, o = %1- is a constant (equal to the mass per unit area). For

one-half of a solid disc, A = %‘ﬁ and 0 < 6 < 7. In 2D polar coordinates, y = r sin6.
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—

a s
a 1A 1
i 1 1 ; ﬁ drd(?——j fr sin@ d
ycmzajydmzafyo‘d/lz—r; f f(r51n9)(A r A el rdB

6
e A 2.0° _2a £|%0
Yem = [?il [— cosS 9]5:0 = ———2—3—(— CcoS T + COoS O) - 3 (1 + 1) i
r=0

na?/2 na s SN

4a
By symmetry, it should be clear that x,,, = @ It should make sense that — o 0.4244q

is less than one-half of the radius because there is more mass at the bottom of the half-
disc than at its top.

Example. A uniform solid disc with radius a lies in the xy plane with its center at the
origin. Find the moment of inertia of the disc about the x-axis and about the z-axis.
Express the final answers in terms of the mass of the disc and a only.

» X

Z

For a solid disc, dm = gdA. It is convenient to use 2D polar coordinates: dA = rdrd®.

For a uniform solid disc, 0 = ~ Is a constant (equal to the mass per unit area). For a
solid disc, A = ma®. If the x-axis is the axis of rotation, vy

= rsin 6 because that
is the distance from the x-axis to each dm (left figure above).

a 2m a 2w
Ix=jrfdm=fy20d,4= f f(rsm@)z( )rdrd@:% f Jr3sin29drd9
r=00= r=06=0
1= cosZG

Recall the trig identity sin? 8 =

2

Gty L 26 4 !
m [r ~ i n

s ] f Cos20% S Sy [9 sm29]
=0 6=0

x a2l 4
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21 i i a? 2
e b e
f the z-axis is the axis of rotation, 7, = r (whereasr; =y = rsin 6 if the x-axis is the
axis of rotation). It instructive to compare the integral below with the integral on the
previous page.

a 21

a 21
Iz=frfdm=fr2crdA= f Jrz(%)rdrd9=7—:-Jf r3drd6

r=06=0

I_mr"‘a o2 ma"’2
7 ma? 4r=0[ e:o—‘nta—""(”)—

2
The moment of inertia is larger in rolling mode (IZ = ﬂa—) than it is in flipping mode

a

(I =ly== ) because a greater percentage of the mass is farther away from the axis

of rotation (on average) in rolling mode. For example, you can see that only the center
of the disc lies on the axis of rotation in rolling mode, whereas an entire diameter (on

the x-axis) lies on the axis of rotation in flipping mode.

Example. A uniform ball (which is a solid sphere) with radius a has its center at the
origin. Find the moment of inertia of the ball about the z-axis. Express the final answer

in terms of the mass of the sphere and a only.
ZA

X

For a solid sphere, dm = pdV. In spherical coordinates, dV = r? sin ¢ drd@d¢. For a

uniform solid sphere, p = % is a constant (equal to the mass per unit volume). For a

2 _ ; _ :
sphere, V = 2™ gince the z-axis is the axis of rotation, r; = rsin ¢ because that is
3
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to ¢ in the right

the distance from the z-axis to each dm. Observe that r, is opposite
that the polar angle (or zenith angle)

triangle shown in the previous diagram. Recall
thal angle lies in the interval 0 < 0 <

lies in the interval 0 < ¢ < 7 whereas the azimu

2m (Chapter 7).
a 2n T
i 2 a2 my > -
e Irfdm = f(rsm‘P)ZPdV = j J J- r? sin (p(—V—)r sin @ drdfde
: r=00=0 ¢=0
a 2m T i -
mam : SR r ’ T
I f f f r*sin® @ drdf de = R l—s—] 1 (615 J sin® @ do
r=00=0 ¢=0 r=0 A
3

Recall the trig identity sin? ¢ = 1 — cos? ¢. Note that the volume of a sphere is 4”: ;

3m [a® ;
b = (2n) | sing (1 — cos? @) dep
=0

Atrad
¢
4 - 3ma’ _ 3ma? A i 5
I = 10 fsmgodgo— 10 jsmqocos pdo
(p:O (p:O
Let u = cos ¢ such that du = —sin@ dp. When ¢ = 0,u = 1.When ¢ =m,u = —1.
—1
3ma? 3ma? 3ma? 2 [u3]”
i % S W 3ma“ |u
/L 10 [—cos plg=o 10 f u? (—du) = 10 (—cosm+ 1)+ 10 [-?]
u=1 u=1
Note: The two minus signs made a plus sign for the second term.
3ma? 3ma?[(-1)3 13 2
e ) GUIE B o S0E (il 1
0. |AEaas 10 e o e

G 3ma® 3ma? (_ Z) . 2 2 bra : S

+ =
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Chapter 15 Exercises — Part A

Directions: Express the center of mass of each object in terms of a characteristic length.

@ 2 non-uniform rod with endpoints @ a thin uniform semicircular arc with radius a
at (0,0) and (0, L), where A = k\/; with its apex at (0, a) and endpoints at (+a, 0)
|
|
|
|
© a solid uniform quarter disc with O 2 solid uniform triangular sheet with

radius a in the first quadrant with its endpoints at (0,0), (b, 0), and (0, h)

edges along the coordinate axes

% Check your answers at the back of the book.

—
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Chapter 15 Exercises — Part B

Directions: Express the center of mass of each object in terms of a characteristic length.

@ one-half of a solid non-uniform disc @ a solid uniform region between the
with radius a with its base along the y-  paraboloid z = r? and the plane z = 9

axis and its apex at (a, 0), where o = kr

@ 2 solid uniform hemisphere with © a solid uniform cone with radius a and
radius a with its base in the xy plane, height h with its base in the xy plane and its
centered about the z-axis with its apex  apexat (0,0, h)

at (0,0,a)

<* Check your answers at the back of the book.
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Chapter 15 Exercises - Part C

Directions: Find the moment of inertia of each object about the indicated axis. Express

each answer as a number times mass times a characteristic length squared.

© a uniform rod with endpoints at (0,0) @ a non-uniform rod with endpoints at
and (0, L) about the x-axis (0,0) and (L, 0) about the line x = %, where
A= kx

@ a very thin uniform ring with radius a @ a solid non-uniform disc with radius a
lying in the xy plane, centered about the lying in the xy plane, centered about the

origin, about the y-axis origin, about the z-axis, where g = kr

% Check your answers at the back of the book.

/
\

109




Chapter 15 - Center of Mass and Moment of Inertia___

Chapter 15 Exercises — Part D

Directions: Find the moment of inertia of each objectabout the indicated axis. Express

each answer as a number times mass times a characteristic length squared-

® a solid uniform very thin hollow @ a solid uniform triangular sheet with
sphere with radius a centered about the endpoints at (0,0), (b, 0), and (0, h), about
origin, about the z-axis the y-axis

€ a non-uniform ball (which isasolid ¥ a solid uniform cone with radius a and

sphere) with radius a centered about ~ height h with its base in the xy plane and

the origin, about the z-axis, where its apex at (0,0, h), about the z-axis
p=kr

** Check your answers at the back of the book.
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Chapter 1, Part A

A i R T A,

—_— = — = —— s 2\ 2.,6

% *.0% ., 3 3 ax 3 (3x%) = |x Yy
AR SO L B
—_— = — = —— = — 345
dy. Oyss3 3 ayy 3 (6y ) =|2x Yy

m=a=ily iy

dx ¥y cyaxT T ;
0z J x il
—=—m = X— = = = Sy rolea,
dy dyy oy y oy e x( )— y2

OL=2x/y=3x= =[5
e 7= x5 = x () =2 () = (2) - 2

dy 2y1/2
ek N ARy
2y \Vy 2y

Note: To put the final answer in standard form, we multiplied by% in order to

. . . b4 X . .
rationalize the denominator. The answers — and g are otherwise equivalent.

2\y
9 8o
a—‘:’=%smtcosu— cosub—smt=cosu(cost) =|costcosu
ow . @ : d : : - : :
5o =-sintcosu = sint—cosu = sinu (—sint) =[—sin t sin u|
ou du ou

Chapter 1, Part B

ag i ey
9 ——eylnx—eya—lnx—ey(x)— 7
dg 9 9 =
a“=—eylnx=lnx—ey=lnx(ey)—
Y dy ay

62

Dyex 2
——(x +2x2y2)——x F 2y* _xz_4x + 2y%(2x) =|4x° +4xy

e
(X $2x29%) = x —(1) + 2x? y2 = x*(0) + 2x*(2y) = [4x"y

11



Solutions

du 3] 1

— RN O oS A p
dp Odp p q 2 pr=ge Jp?—q2
9q 0dq \/ 2_q2 JP2-q2

Note: Recall the chain rule from calculus. Let u = p? — g% and f = v/u such that

ar _
dp
L e
as

and similarly for the derivative with respect to q. Since we are treating g

pe—q2

ou
constant for 5, e may use the chain rule for a function of one variable.

Oh =9, 32 % > 2ttu

Srom atln(t +tu) = t2+t at (t +tu) = t2+tu
oh . 0 2 2 i t
i auln(t +tu) = t2+t u (t +tu) = t2+tu

Note: As in the solution to Exercise 7, we applied the chain rule.

Chapter 1, Part C
af 6 X 1520 4 1 3 4x3
==—x"==4x’) =—
9 ox  ox y2  y20x y2 ( ) y2
92f = (af) 9 4x 4 0 2 422
— = = =——x3==03x%) =
ax2  9x \ox ax y? y2 9x y2 ( ) y2
6f xt 4 i)l 4 e 4 e 2xt
= xf——=x"— — e = ==
ay ayy 9y y? 6yy G, y3

9%f of S Tiecisnng, oy 0 Ul SICRESRS e IS PR e —4y _ |6x*
-6_5/_5—6y( ) 6y( y3)_ = ay y3 ¥ 27”7 2¢:(=3y=5) yt

: : 5} . :
aw _ 9 t26iny = sinu—t? = sinu (2t) = 2t sinu
at at at

2 = ! 0 : :
£ e —a-(‘—a—“-’) = —Q—Ztsmu = 2sinu—t =2sinu (1) =|2sinu
at? at \ dt at

)
Dwis O t251nu—t2—smu—t2cosu
ou ou
2 . -
uzi(ﬂ)zit cosu = t22 cosu = t2(—sinu) = |—t2sinu
ou? ou \ou ou ou
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Chapter 1; Part D

9 d a
82z _a_(_g) = Px Ve =20 =20l (4y3) = | BTy
A b S S A R o
S e e el C RS
gy by 2 y
%z _ _a_(a_z_) = 2 x8y3 = 3.2 48 — y3(8x7) =[8x7y?
axdy  0x \@y 0x ox
Note: For most common standard functions, the mixed second partial derivatives
2 9%z : ST e 4y - - )
bg—;— and = are equal, except near discontinuities, in accordance with Clairaut’s
yox

theorem. In Chapter 13, we will see that this relates to conservative fields.

ox 0x Y
02z @ (az) g o 05 % 2 =
= —[—)=—ye™ = e*¥ — —e™ =|e®™ + xye®™|=|(1 + xy)e*Y
dydx 3y \dx 6yy ayy +yay + Xy (I5E J’)
0z 0 x
dy 0y
0%z 0 [0z 0 o 0 )
oxdy  0Ox (ay) axxe axx 1 O0x o (1 1 xy)e
. dz dz du ; a d
Notes: Use the chain rule, — = ——, with u = xy to show that —e*Y = —e" =
ax du dx dx dx
Zoudt = pu (ixy) = ye" = ye*”. Similarly L XY = xe*¥, See the note to
du  dx dx ' " dy :

Exercise 7 regarding the chain rule.
Recall the product rule: Ed; (rq) =p %f—c +-q %. For example, letp = x and g = e*” to

d d dq dp d d x
see that—xe*Y = —pg = p— = =x—e™ Y —x =xye* +e* =
7z X€ P4 pdx+qu X e« =+-e y T

dx dx
e™ + xye*y. Similarly, d%yexy = e™ + xye*Y. (When this is applies to the partial

derivatives, note that we are treating the other independent variable as a constant.)
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Solutions

Chapter 2, Part A

zi-zizz+2—;%i-=(:—xxsm[iwzﬂ + () [t =)
2s3(s*4t%) +t2)

= = (5x*[y)(4s%) + (2\/_) (45%) = 20s3(s* + t2)*Vs* — £% + ==

{422 \/Ttd,
R e T W sy gt Lo L

ds (st-t*)

9% 0 0% 9z 9 P 3 9 )
ai " ai a: t éa_f 7 (axsﬁ) [E (s* + tz)] > (a_yxs‘/;) [5? = t4)]
2t3(s4+t2)5

% _ (5x/5)(20) + (22) (—4t%) = 10¢(s* + ()WsT = F - 200 )

92 _|10¢(s* + £2) /5T =% — 250 t0) V5T

at (s*—t4)

Notes: In the last step, we multiplied by\/—ii_—f_ in order to rationalize the

5 s T Bl e S b R M M
denominator. Note that—\/_}; —y / 2y / =

@3, =55 5o = (xinwcosy) (iW) + (%xcosy) Gr*e*)

d
é = (Cosy) (3p?q*) + (= Inxsiny)(2pq®) =

cos(p a*) — 2pq® In(p*q?) sin(p?q?)

Z—; = 3C—°S(;L) — 2pq®In(p®q?) sin(p?q3)

i OR0x L0 Oy 300} B e 0

B0 o (axlnxcosy) (6qp q ) 2z ( lnxcosy) (—p2q3)

of _ s

7 (“’”) (2p°q) + (—Inxsiny)(3p?q?) = p—-COS(p2q3) 3p2q? In(p3q?) sin(p?q?)

of _|2cos(p®q®) , 5 32V i
s = T g 3p*q”In(p>q°) sin(p*q°)

aw 6w ax ow a_y 6w az
as ~ ox as dy ds 9z as
ow

3= (o) (Rrcmsesins) + (30727 (2ssmesin) + (21727 2
as—(axxyz ssScostsinu )+ (= xy®z aSssml:smu)+(a—zxyz )(a—sscosu)

= = (y2z3)(cos t sin u) + (2xyz3®)(sint sinu) + (3xy2z2)(cos u)

=655 sin? t cos t sin® u cos3 4

ds

A sin® t cost sin® u cos® u + 2s5 sin? t cos t sin® u cos3 u + 3s5 sin2 in3 3
— n“tcostsin®ucos®u
ow

)
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aw aw ax L, Qﬁa_y ow 0z

at ~ ox ot dy 0t 0z at

4 ( yz)(iscostsin ) 9 xy223) (L ssintsi

= bt u +(a—yxy 2 )(assmtsmu) ( Xy 27 )(a scosu)
ow __ N7 o ; :

TR (y%z3)(=ssintsinu) + (2xyz3)(s cos t sinu) + (3xy2z2)(0)

ow 5 .

— = —5° sin3 t sin® u cos® u + 256 sin t cos? t sin3 u cos3 u
aw 6w ax aw ay aw az

au ax 6u ay u az au

= (6 )(6 ' ) - 2 s si i L. i
xXy?z —scostsinu +(— 2 3)(_ ) ( 2 3)( )
s y = ayxy z° )58 sintsinu ) + 52XV % J\5;5 cosu

ow
—= (v?z3)(scostcosu) + (2xyz®)(ssint cosu) + (3xy?z2)(—ssinu)

w A 3
—_—= 56 sm2 tcostsin
ou

ow 6.2 A 6 5 c .
= [356 sin? t cos t sin® u cos* u — 3s® sin? t cos t sin* u cos? u| = |3s6 sin? t cos t sin® u cos?u cos(Zu)J

Note: Recall the trig identity cos(2u) = cos? u — sin® w.

2 2 4 6 cin? =24 2

4 ¥ :
wucos* u + 2s° sin? t cos t sin® u cos* u — 3s° sin” t cos t sin” u cos” u

Chapter 2, Part B
ds _osdr  Dady (0 ) (8 o) (2N (cos )
dt  dxdt Ty dy dt ox y dt sint) + oy y dt 38
2 ; 3 si 2 3 < o
2=:3icost+(—£—)(—smt) =3t t+—tsmt— 3sin? t +
dt y y? cos? t

Z‘j gi Z: + Z—f}% = (% sec x tan y) [%(1 - tz)] (Ba—secxtany)[ 1- tz)]

Z_i = [2t sec(1 + t2) tan(1 + t2) tan(1 — t2) — 2t sec(1 + t?) sec®(1 — t?)

dw _ dwdx , owdy awdz_(a Xo=¥ | )[d 2 ]
———t——= | Nz = ({t==3t) |+
dat  ax dt e dy dt &+ dz dt d i dt( )

L e¥e~ X d
(Ee e ylnz) [—(t3+t2)] ( eXe ylnz) (EE:“Z)
% = (2t + 3)et’+3te~t*t* In(3t?) — (3t + 2t)et*+3te =t~ In(3t2) +%e

t44at -t

—t3+3t

dz L e 3 2 E
—= (2t +3)e 343t |n(3t2) — (3t2 + 2t)e " ¥ In(3t%) + (t) e
% = (2t + 3 — 3t2 — 2t)e~* *3 In(3t?) + (%) et iR

dr —t3 2 2\ —t3+3t
~=(-3t*+3)e”" +3tn(3t%) + (:) e

—t3+3t

' , : 2
= =(3(=t? + 1)e"" 3 In(3t?) + (;) e

[Z+3te—[:{—[z —_ e—[3+3[.

Note: eMe™ = e™M*n gych that e
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Solutions

Chapter 3, Part A

% T :%(xz + 2xy — y2) = 2x + 2y = 0 Divide both sides by 2 to get x +y = 0.

0z

e éa—y(xz + 2xy — y?) = 2x — 2y = 0 Divide both sides by 2togetx —y = 0.

Add the two equations together: 2x = 0. Simplify: x = 0. Plug thisintox +y = 0 to
see that y = 0. The critical point is (0,0).

028 aed o9 95z =0 "
E—E;(Zx+2y)—2 , ayax_ay(2x+2y) 2
9%z ) 0%z )

= - _— = — T — — — —2
Ty (2% =2y) =255 Yo (2x — 2y)

£.0%L. 021, . 102 K 8AE woy e sk e < i
" 9x29y?  9xdy dydx (2)(=2) - (2)(2) il 8

(0,0) is a saddle point since D < 0. There are no local minima or maxima.
Evaluate z = x? + 2xy — y? overthesquare—1 < x < land-1<y < 1:
e Topedge(y=1):z=x?+2x(1)—1% =x%+2x — 1.
e Rightedge(x =1):1z=12+2(1)y—y? =1+ 2y — y2
e Bottomedge(y=-1):z=x%2+2x(-1) - (-1)? =x%? —2x — 1.
o Leftedge (x=—-1):z=(-1)*+2(-D)y—y?=1-2y—y2
Along the boundary of the square, the minimum value of z is —2 and occurs at (—1,1)

and (1, —1) and the maximum value of z is 2 and occurs at (1,1) and (-1, —1).

Since z doesn’t have any local minima or maxima, the absolute minimum is —2 at
(=1,1,-2) and (1, -1, —2) and the absolute maximum is 2 at (1,1,2) and (-1,-1,2).
Note: To find the minimum and maximum values along the edges of the square, first
apply the usual single-variable first and second derivative tests to the function for

each edge (for example, at the top edge, where z simplifies to z = x? + 2x — 1, set
az

—. = 0 to find that the top edge has a minimum of —2 when x = —1). Then also find

the value of z at each vertex. For the absolute minimum and maximum, look at the
minimum and maximum values along the boundary and also look at the local

minimum and maximum (this problem is special in that it didn’t have any).
0z d

ax E(e_xz_yz) = —2xe™**¥* = 0 This is only true if x = 0, x > o0, or y - oo.
F) 8 prizaisg o i ;
a_i ==—=le A= ) = —2ye~**~¥* This is only true if y = 0. The critical point is (0,0).
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ey
g%— e _2xe ™ V) = —2e7F V" 4 gx2e-P-y? _ = S (2xhe 1ok
%:%(—er' SV = Aaepe O o, aizay ( 2ye=*'V") = dxye~F~"
ay ( —2ye ") = —2e7 Y 4 4y2e~ Y = 2(2y% — 1)’

D a: g;f aiafy aay;x 2(2x% — e " 2(2y% — 1)e™*" " — (élxye"‘z‘)’z)2

D = (16x%y? — 8x% — 8y? + 4)e~2(x*+¥%) _ 16x2y2¢-2(x*+¥?)
D = (=8x% — 8y? + D)e2**+¥%) = _4(2x? + 2y — 1)e2+*+")

Forx = 0and y = 0, the value of D is D = —4(—1)e® = (—4)(—1)(1) = 4 and the

2
value of-—zlsz—z =2(-1)e® =2(-1)(1) = —2.Since D =4 >0 andg—z =-2<0

at the critical point (0,0), z has a local maximum at (0,0). The value of z at the
critical point is z(0,0) = e° = 1. The local maximum of z equals 1 at (0,0,1). Note
that z also approaches a minimum of zero as x or y become infinite.

Evaluate z = e ~* = over the disc x2 + y? < 1. At the boundary of the disc,

x? 4+ y? = 1. Plug this into z at the boundary: z = e(*+y%) = ¢-1 = -2— ~ 0.37 at

every point on the boundary. The absolute minimum ise™" = -i; ~ 0.37 on the

boundary of the disc and the absolute maximum is 1 at (0,0 1)

Notes: Recall that e® = 1. We applied the product rule to flnd = and —, Also see

the note to the solution to Problem 1.

Chapter 3, Part B

0z

E = i(263 — 6xy +y3) = 3x? — 6y = 0 Simplify: x* = 2.

a .
= (x —6xy+y3) =—-6x+ 3y? = 0 Simplify: Y= 2%

Plu% X = 7 from the second equation into the first equation: = A 2y. Multiply by 4
on both sides: y# = 8y. Factor: y(y3 — 8) = 0. Eithery = 0 or y3 = 8. Cube root
both sides: y = 0 ory = 2. Plugy = 2 into the second equation: 22 = 4 = 2x. Divide
by 2 on both sides: x = 2. The critical points are (0,0) and (2,2).
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Bl O B 2 3z _ 8 CE et
5 = 5, (3x  —6y) =6x ', T (3x y)

Cle e Lo 2{mas i=——6x+3 2) =6y
axay_ax( bl o) =500 dy? 6y( /i

- e — (—6)(—6) = 36xy — 36 = 36(xy — 1)
=1L LT = (6x)(6y) — (—6)(~6) = 361y

For x = 0 and y = 0, the value of D is D = 36(0 — 1) = 36(=1) = —36. Thereisa

saddle point at (0,0).
Forx = 2and y = 2, the value of D is D = 36[(2)(2) — 1] = 36(3) = 108 and the value

ofﬂls; = 6(2) = 12.Since D:= 108 > 0 and— = 12 > 0 at the critical point
(0,0), z has a local minimum at (2,2). The value of z at the critical point is Z2.2):=

— 6(2)(2) + 23 = 8 — 24 + 8 = —8. The local minimum of z equals —8 at (2,2, -8).
Evaluate z = x3 — 6xy + y3 over the triangle with vertices at (0,0), (4,0), and (4,4):

e Bottom edge (y = 0):z = x3 — 6x(0) + 03 = x3.

e Rightedge (x = 4):z =43 —6(4)y +y° = 64 — 24y + y>.

e Hypotenuse (y = x):z = x3 — 6(x)(x) + x> = 2x3 — 6x2.
Along the boundary of the triangle, the minimum value of z is —8 and occurs at (2,2)

along the hypotenuse and the maximum value of z is 64 and occurs at (4,0). In this
problem, the local minimum happens to coincide with the midpoint of the
hypotenuse on the boundary of the region of interest. The absolute minimum is —8
at (2,2, —8) and the absolute maximum is 64 at (4,0,64).

Notes: The equation for the hypotenuse is y = x because the slope of the
hypotenuse is 1 and the y-intercept is zero. Also, see the note to the solution to
Problem 1 (regarding how to determine that the minimum value of 2x3 — 6x2
occurs at x = 2 by using the single-variable extreme value derivative tests).

0z d : . ;

o = 55 (cosxcosy) = —sinx cosy = 0 Either sinx = 0 or cosy = 0.
Eitherx = 0,x =m, x = 2m, y =§,0ry 23?1:
9z _ 9 25 - . .
3;—5—(cosxcosy) = —cosxsiny = 0 Either cosx = 0 or siny = 0.

E1therx—7;r =32—",y=0,y=7t,ory= 2T,

Combine these results. Each critical point has x from one set and y from the other set.
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The critical points are (0,0), (0,), (0,2n), (r,0), (rr, ), (%, 270), (21, 0), (27, 70),
T E-20 ) (a1 LA
(21‘[’ 27'[), (;: 2)1 (2 ' ); ( 2’ 2); and (7;7).

9%z _ @ . = 9%z a > ; :
22 =—(—sinxcosy) = —cosxcosy |, == (= =

T ( 14 y 5% (—sinx cosy) = sinxsiny
9%z 9 . : : 9%z’ @

2~ =—(—cosxsiny) = sinx sin Lgveg Bor : A

e ( y) YAl o= (= cassiny) COS X COS Y

azfazf aZf azf £ 5 s a 5
DE = e o 0. O TUOSCy sintisinty

92 = .
Evaluate D and é_x—]; at each critical point to determine the nature of each critical point.
o There are local minima of z = —1 at (0, ), (r, 0), (, 2m), and (2m, ™) because
D=1>0and2Z=1>0
0x2
e There are local maxima of z = 1 at (0,0), (0,27), (1, ), (27, 0), and (27, 27)

2
becauseD =1 > Oandg—xi-: -1<0.

. T T T 3T 3t 3 3m
e There are saddle points at (E’E)’ (5,7), (7, E)’ and (—2—,?) because
D=-1<0.
There are actually an infinite number of critical points. Simply add or subtract any

integer number of 27’s to any value of x or y (or both) above to obtain another
critical point.

Evaluate z = cos x cos y over the square 7 < x < 2mandrw < y < 2m:

Bottom edge (y = m): z = cos x cosm = — cos x.

Left edge (x = m): z = cosmcosy = —cos .

Top edge (y = 2m): cos x cos 2 = cos x.

Right edge (x = 2m): z = cos 2m cosy = cosy.

Along the boundary of the square, the minimum value of z is —1 and occurs at (27, 7)
and (7, 21), and the maximum value of z is 1 and occurs at (7, 7) and (2, 27). In this
case, the absolute extrema are also local extrema.

Note: See the note to the solution to Problem 1.
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Solutions

Chapter 4, Part A

© = || = JEF 7 = (-2 + (-v2) = VZF 2= Vi=[2]
8 =tan: (::—y) =ftans (_—‘/-E-) =tan"1(1) = LA

x -V2 4
Note: 6 lies in Quadrant Il because A, < 0 and 4, < 0.

@5 - 8] = EZTE - (-2 + (V3) =vIT3=Vi=[2]

0 = tan~! (B—y) = tan~! (ﬁ) = tan‘l(—\/§) = [2&| = [120°

Bx "‘1 3

Note: 6 lies in Quadrant Il because B, < 0 and B,, > 0.

© C. = Ccos = 6c0s210° = 6(-2) = [=3V3

Cy = Csin6c = 65in210° = 6 (—3) =

Chapter 4, Part B

0D=||ﬁ||=\/D,%+D§+DZ7-=\/22+(\/§)2+(—4)2=\/4+5+16=\/7§=

2i+jV5-4k (22  V5: 43
== =|=i+—)J—=<=k
I 5 5 5 5

|cl

Q)

=l

=1l

+F=(7,-4,6) +(59,-8) = (7 +5,—4 + 9,6 + (=8)) = [(12,5, —2)

2G — 5H = 2(4 + 2j - 3k) - 5(31 - k) = 81 + 4§ — 6k — (151 - 5Kk)
—5H =81+ 4f — 6k — 151 + 5k = (8 — 15)1 + 4] + (=6 + 5)k = —7i+4j -k

o> O

Chapter 4, Part C

@ 4, = Acost, = 6cos150° = 6(~L2) = —3y3
B, = BcosOp = 12cos270° = 12(0) = 0

Ay = Asinf, = 6s5in150° = 6(3) = 3

B, = B'sinfp = 125in270° = 12(—1) = —12
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R, = A+ Be =-3V3+0=-3V3
Ry_Ay+B 3+( 12)_'—

R=|[R| =VR:+R5 = \/(‘3\5)2 + (=92 =/(9)(3) + 81 = V108 = /(36)(3) = |63

Ry -9
P = At 1(Rx)—tan 1(_—3\/—5)=ta 1( )—tan‘l(\/—)_ 4?” = [240°]
Note that 6 lies in Quadrant IIl because R, < 0 and R,, < 0. We factored the perfect
square 36 out of V108 to put the answer in standard form: V108 = 6+/3.

@, = Ccosbc = 4cos210° = (—g) = -23
= D cos By = 4V3cos 180° = 44/3(-1) = —4+3
¢, = Csinf = 4sin 210° = 4(—%) = =2
D, = Dsinfp = 4v/3sin180° = 8v3(0) = 0
§S=D-C=D+ (—E), where —C is the reverse of C. The components of —C are

opposite to the components of C. Therefore, instead of D, + Cy and D,, + C,,, we need

to subtract the components of G

Sy =Dy—Cy=—4V3—(-2V3) = —4V3+2V3=-2V3
sy=Dy—cy_0—(—2)_0+2_2

$= 8| = JSEFSF = J(-2v3)" + 22 = DB ¥4 = V6 =[]

65 = tan™? C—y) =tan (:—2%) =tfan " (ﬁg) = 5{- =]150°
Note that 65 lies in Quadrant Il because S, < 0 and S,, > 0.

Chapter 4, Part D

n t~1/2 4 i 25 i
O3t =3 = 2 (1ve -2 =I5 VE- T2 =g e -t ===
V(ay =l Eurabays |4
Ve 2(2) |4

{0 R e g - Y S S B T R

) =g 2 ot r i
@y la i _____i__z——l-= = 4 taking the positive root)

) 4(4)32 — T 4(a®)12 T 4(6d)V? 4(8) 32( & P

\
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e

@ The initial velocity is Vo, = 4i. :

~ 2~ % * t — ? ’:.tj
_’=Vo+ftt_05dt=4i+ft_ 6t]'dt=41+6]f=0tdt—41+6][2]t=0

Vv
v=ait6(>-2) =4 +6,()_4i+6i(2)=|4i+ 12§

- — A A 2 r2 s 2 2
Ar= ft=0vdt = ft:O (41+ 6]-2—) dt =4i[_ dt +3j ft:Ot dt

AF = 4i[t]2, + 3] [§]:=0 - di2-0+3(E-%)=8i+3j(3) =[8i+8

: o st2 .
Note: Plug the expression for Vv that is a function of time, 4i + 6j = into the integrand

% i = . t =
for AE. It would be a mistake to plug the final velocity, 4i + 12}, in for vin it roVat.

Qin=5-%
5(%) = 16icos[ ( )] = 16i cos (—) = 161 (—) = |8i

aF = [ Fde = [O[sisin(2t) — 4]] dt = 81 [/° sin(2t) dt — 4] [7¢ de

cos(2t) /6

— 4j[t]5_, = —4i[cos(26)]7S — 4jlt]Ts

AF = —4i {cos [2 (—)] + cos[Z(O)]} — 4j (E — O)

AF = si[—

AF = —4i|cos(5) — cos 0| - Zj = —4i(; - 1) - Fj = —4i(-3) - Zj =

[8isin(2t) — 4j] = 81—sm(2t) ~ ]—4 = 16i cos(2t) — 0j = 161 cos(2t)

° 2T 2

Zii=—)
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chapter 5, PartA

0;\'.1‘3’:,4 B, + AyB, + A,B,
=(5)(6)+(2)( 3) + (-4)(-1) =30 — 6 + 4 =[28]
x B = (AyB, — A;B))i+ (A,B, — AB,)j + (4,B, — — A,B, )k
AxB=I[2)(- 1)—( DD+ (D6 - GIEDI+ [B)(-3) — (O)]k
B=

'A* (=2 —12)i+ (=24 + 5)j + (=15 — 12)k = |-14{ — 19j — 27k
@C -D=CD,+C,Dy+C,D,

¢-D=(8)(9) + (=3)(0) + (6)(=7) = 72 — 0 — 42 =[30]

¢xD = (CyD, — C,D,))i+ (C,D, — CD,)j + (CxDy — €, Dy )k

CxD = [(-3)(=7) — B)O]i+ [(6)(9) — BN + [(®)(0) - (=3)(D]k
CxD= (21— 0)i+ (54 +56)j+ (0 + 27)k =|21i + 110j + 27k

©F F=E.F +EF, +EF

E-F=(4)(=3)+ (1)(5) + (-2)(-2) = —12+ 5+ 4 =[=3]

ExF = (B — E,F))i + (E;F; — ExF)j + (ExF, — EyE)k

ExF=[(1)(=2) — (2B + [(-2)(-3) - @] + [(A(5) - (D(-3)]k
ExF=(=2+10)i+ (6 +8)j + (20 + 3)k = 81 + 14j + 23k

Chapter 5, Part B

O X -E = ||A]|||B|| cos 6 = (6)(12) cos 150° = 72 (-2) =[-36v3

& x B = [[&]|[B]| sin & = (6)(12) sin 150° = 72 5) =

:D = €D, + CyDy + C;D;
- (VA)(1) + ()(=V3) + (-2)(@) = V3 -3 -4 =—4
|IC”=\/C,%+C§+CZZ=\/?\/§) +12+(_2)2=\/'3_+T+—__4=\/—8'= (4)(2)=2\/_2_

ID]| = VDZ + D§+D§=\/;;+(—\/§)2+22=V1+3+ =8 =J(4)(2) = 2V2

—————
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Solutions

6 ﬁ = ”E”“B” cosf - —4 = (2\/—2)(2\/5) COSH e = 4(2) COSQ — _% = cos @

g-=tcos7 (— %) = 2?” =202

Note: Since cos 6 < 0, the condition 0 < 6 < 7 requires 6 to lie in Quadrant II.
Chapter 5, Part C

@ Make the definition D = B x C.

D =B xC = (B,C, — B,C,))i + (B,Cy — BC,)j + (B:Cy — ByCo)k

= [(=3)(®) — (DO} + [(-1)(-3) - Q@] + [(2)(0) — (-3)(-3)]k

(=12 + 0)i+ (3 — 8)j + (0 — 9k = —12i — 5] — 9k

-(BxC)=A-D=A4,D, +A,D, +A4,D,

.(BxC)=@(=12) + (-2)(-5) + 3)(-9) = -48 + 10— 27 =

A x (BxC)=AxD = (4,D, — A,D, )i + (4,Dx — A;D,)j + (4:D, — AyDx)k

Ax (BxC) = [(-2)(=9) - (=5 + [B)(-12) = DN + [(H(-5) = (-2)(-12)]k

A x (BxC) = (18 + 15)i + (=36 + 36)] + (=20 — 24)k = 331 + 0 — 44k = 331 — 44k
@ Make the definition D =BG

D =B x C = (B,C, — B,C, )i + (B,Cy — B:C,)j + (BxCy — By C )k

D = [(0)(2) — (- (=D]i + [(-H(®) = (D @]j + [ (=D — (D)(®)]k

D= (0—16)i+ (-32 —8)j+ (=16 — 0)k = —161 — 40j — 16k
A-(BxC)=A:D=A,D,+A,D, +A4,D,

. (Bx C) = (6)(~16) + (2)(—40) + (=4)(~16) = =96 — 80 + 64 =

A x (BxC)=AxD = (4,D, — A,D,)i+ (4,D, — A,D,)j + (A.D, — A,D, )k

A x (B x ) = [(2)(=16) = (=) (—40)]i + [(~4)(~16) — (6)(~16)]] + [(6)(=40) — (2)(~16)]K
A x (B x C) = (=32 — 160)1 + (64 + 96)] + (~240 + 32)k =[—1921 + 160] — 208K]

A x (B x €) =[(—192,160, —208)

> »l Ol O O
I

|

|
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Chapter 6, Part A

@ x=rcost= 1cos%ﬂ= 1(_\/?5_) = _?

y=rsin6 = 1sin5?”= 1(%) =
@ x=rcost =8cos4?"=8(—%) =

y=rsing =8sinT=8(-2) =[—4y3

QT=W=J(J®2+(—1)Z=W=JZ=
o=t (2) = ™ (3) =[5 -

Notes: @ lies in Quadrant IV because x > 0 and y < 0. The answer for 6 is equivalent

to HT” rad or 330°.

Or=yx2+y2=02+(-3)2=V0+9=v9 =[3]
o=t () = an () =[] -

Note: Although %3 is undefined, 6 is defined and clearly equals 270° because (0, —3)

corresponds to the —y-axis. The answer for 6 is equivalent to —g rad or —90°. Recall
from trig that tan(270°) is undefined and recall from calculus that tan @ approaches

. . : 3
negative infinity as # approaches _22 rad.

© Recall the trig identity cos(26) = cos* 8 — sin® 6.
T = cos? § — sin?  Now use the equations cos 6 = fand sinf = %

2 2
== - ')r% Multiply by 2 on both sides: r* = x* — y2,

re

Use the equation r = \/x2 + y2 = (x2 + y?)/? to get (x? + y?)3/2 = x2 — 2,
Square both sides: (x2 + y2)* = (x? — y?)% Expand each side.

@)’2 + 3x2y* + y6 = x* — 2x%y* + y*

"= cos(26) represents a four-petaled rose centered about the origin.
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Solutions

e
@ Usesinf = Ztowriter =1+ % Multiply by  on both sides: 7% =7 +.
T
Use the equation r = /x2 + y2 to getx? + y? = /x* + y2 4.

Subtract y from both sides: x? + y2 —y = {/x? + 2.
Square both sides: x* + 2x2y? + y* — 2y° + y* — 2x2y = x? + y2.

x* — x2 + 2x2y% +y* —2y3 — 2x*y =0
r = 1 + sin @ represents a cardioid that is symmetric about the y-axis.

@ Use x =rcosfandr = /x2 + y2 toget/x2 +y? =1+x.

Square both sides: x? + y2 = 1 + 2x + x?.
y2 = 2x + 1|represents a parabola that is symmetric about the x-axis with its apex

at (—5,0).
1

fitheg SR in o
© Recall the trig identities tan § = —— and sec = —.
cos 6 cos 6

=309 L Multiply both sides by cos? 6 to get r cos? 8 = sin 6.

cos6 cos@’

Multiply by r on both sides: 7% cos? 8 = rsin 6.

Use x = rcos @ and y = rsin @ to get|x? = y|

r = tan 0 sec 6 represents a parabola that is symmetric about the y-axis with its

apex at the origin.

Chapter 6, Part B

1
rcos8’

© Usex =rcosfandy =rsinftogetrsinh =

Multiply both sides by r cos 6 to get|r? sin6 cos 6 = 1|

If you use the trig identity sin(20) = 2 sin 8 cos 8 such that sin 6 cos 8 = Smize), this

r2sin(20) "

1 or|r?sin(260) = 2|

can be written as

ik
y = _represents a hyperbola with the diagonal line y = x as its axis of symmetry.

@Usex=rcos€andy=rsin@togetrsin@ = r% cos? 4.

sin @

Divide by r and by cos? 6 on both sides:

cos29 1
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If you use the trig identiti = g S
4 N SRl cos @ and sec§ = cos @’ this can be written as
[tan O secd = ],

L S : .
y = X7 represents a parabola that is symmetric about the y-axis with its apex at the
origin.

@ Use x =1 cosfandy = rsinf to getrsinf = coal

Divide by r cos 8 on both sides:

tan @ :l.
2

X
y = S represents a straight line with slope % that passes through the origin.

2 cos% 6

@ Use x = rcosf andy = rsin 6 to get|r?sin2 6 + - —— =il

Multiply both sides by 4 and factor to get |r?(4 sin? 8 + cos? 8) = 4|

2
y? + xj = 1 represents an ellipse centered about the origin with a semimajor axis of

2 and a semiminor axis of 1, which passes through (+2,0) and (0, £1).

@® Firstuse £ = icos® +jsin6 and® = —isin 6 +jcos .

—

>

= r2(icos6 +jsin 0) sin@ + r?(—isin6 +jcos ) cos 6

el

_ir2sin@cosf +jr2sin?6 —ir?sin6 cosd +jr? cos* g

A = jr2(sin? @ + cos? 0) = r2j|because sin? @ + cos? 8 = 1.

because w2yt =1

@ Firstusef = icos@ +jsinfand @ = —isin6 +jcos 6.

|
Il

g = (icos® +jsin@)secd — (—isin 6 +jcos ) csc

ig identities sec 8 = L _andcsch = =
Recall the trigidentities = =
cos@z , sinf¢  sinfs cosfs o  sinbz 2 cosfz 52 (sinB_cosB)':
i g e - =i i—= =21+ :
B = Cosel cosel sin¢9l sin0] +cosc9] sm9] cos 6 sin @

; : Y s X%, coséd
gince X = T COS 6 and y = rsin 6, it follows that i and = =

0s6 y  sin@’
ﬁ —|2i+ (%—i)i
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Chapter 7, Part A

—2V2

ox =rcosfsing = 8cosz—3ﬂ-sin§ = 8(—-) (—\/2——-) =
2)(9) -

. . e 2T . TE i,
y=rsm9$mqo—8sm—3—sm4—8(2 =

Z=1rcosQ = 8cos§-=8(—2@) =[4V2

Note: ¢ is the polar (or zenith) angle and € is the azimuthal angle in common math

notation. For common physics notation, swap ¢ and 6. (The order may also differ.)

@ x =rcosbsing =lcos3—”sin5—n=l(0) (—1-) =[0]

1

y—rsm951ncp——sm—sm—=—(— )( ) =|-3

57 1( \f)z V3

z—rcoscp=-cos——=; =

6r=\/x2+y2+zz=\/(\/5)2+(—3)2+(—2)2=\/3+9+4=\/E=
0=tan‘1(%)=tan 1(\/_)—tan‘1( ¥3) = —-375 =or-5—;r =[300°]
o= ot () o (3) = or () =[]

3

Notes: 0 lies in Quadrant IV because x > 0and y < 0 and ¢ > gbecause AR

Recall that 0 < ¢ < mw whereas 0 < 6 < 2.

0= T = () 4§ + () = fr3vi= -

6 =tan"* (%) = tan"* (222) = tan"I(- 1)_3—’Z [135°]

(0= coSF - (f) = COSE: (%) l [60°]

Note: 6 lies in Quadrant Il because x < 0 and y > 0.

eNotethat%=tan6 and-:-= — = secg.

cos ¢

e Y AX:%yc4z? ) 2 22

~ = —such that > = =——— Square both sides: = = =2 *Z +y2 il
X z

Cross multiply: [y?z? = x* + x2y2 4 52,2
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@ Mu!tiply by r? on both sides: 2 cos? 8 sin? ¢ + r2 cos? ¢ = 1.

Frr=1l

Chapter 7, Part B

oAdd 72 to both sides to get x? + y2 +2z2 =272 User? = x?% + y2 + z2 and

7 = rcos ¢ to write this as r2 = 2r2 cos? ¢. Divide by r2 on both sides: 1 = 2 cos? ¢,

which may be expressed as % = cos? @ |. Note: Recall that ¢ is the polar angle and 6

is the azimuthal angle in this book.

@ Use x = 7 cos@sing and z = 7 cos ¢ to get r2(cos? @ sin? ¢ + cos® @) = 25|

@ Use x = rcos @ sing and z = 7 cos ¢ to get r cos @ = r2 cos? 0 sin® ¢.

Divide by 7 on both sides: |cos ¢ = r cos? 8 sin® |,

@ Divide by x and multiply by z on both sides to get % =1

Usei’-=tan6 and z = rcos¢ toget|rtanfcos@ =1}

Note: The answer is equivalent to|r = cotf sec¢|

® Use? =icossing +]jsinfsing +kcosp, 8 = —isind +jcosf,and =

icos 6 cos ¢ + jsin 6 cos ¢ — ksin .

& =r2(icos 0 sin g + jsin 8 sin @ + kcos @) cos O sin ¢ + r2(—isin@ +
icosB)sianinzgo+r2(fcost9cosq0+]°sin9cosq0—f<sin<p) sin ¢

A= 172 cos? 0 sin? ¢ + j r? cos O sinf sin® ¢ + kr2cos@sincos @ —ir?sin®Osin® @
+iT2C0398in851n2g0+fr2c059cos<psing0+fr25in6cosgosingo—f{rzsin2<p
TOWusex =rcosfsing,y =rsinf sing, and:z= 1 COS ¢:

A= 2% 1 xyj + xzk — y2i + xyj + xzi + yzj —kr?sin* ¢

Since sin? g + cos? ¢ = 1, it follows that sin? ¢ = 1= cos? ¢, which shows that
rzsmz(ﬂ=r2—r2cosz<p=r2—zz = x2+y?+z% — 22 = x* +y* (since

r2=x2+y2+22).

K: 23 2 ~ 2 % % 2 B i
< X 1+xy]+xzk—y2i+xyj+x21+yZJ—x2k - y%k
A=

|(x2 =~y +xz)i+ 2xy + yz)j + (xz — x2 —y)k
\
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Solutions

Chapter 8, Part A

0.~ .ot = seus(-5) - 4(2) -
y =T1.sin@ =4sin(—g) =4

o Al S
©x=1r.cos0==cos===
g0 g 003

: 2. 21l 2 (N3 3 1
-_— —_ - — e — — ] — Z_"———
y—rcsm6—3sm3—3( )— ;s

©r.=/2+y2=/(-2)2+02=V4+0=v4=2]
6=tan'1(§)=tan“1(_ﬁz-)=tan‘1(0)== 5

Notes: 8 = 180° because x < 0 and y = 0.

O = /77y = [(—VB) +V7 = 6T Z =B = /DD =212
0=tan ' (%) — tane " (_ng) =ifan (—\/%) = 5?” = , lz=43

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.
@ User. = /x2 + y2 to get|z = x? + y?|

(6] Use-z- = :::;i = tanf to get%—?—’ = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User, = \/x2 + y2 to get|r? + z2 = 9|
© User. = /x% + y? to get[r, = 2z]
© Usex =r.cosfandy =1.sinf to get|z = 22 sin 6 cos 8| or|z = 2 sin(26)|
Recall the trig identity sin(260) = 2 sin 6 cos 6.

@ Factor: y2(x2 + y?) = x?z%. User, = \/}Tyz to get y2r2 "= x2322.

Square root both sides: yr, = +xz. Divide by x on both sides: z = + 2,
X

in 6
UseZ =222 = tanf to get[z = r.tan'@
x cos6
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Solutions

Chapter 8, Part A

@ x=1.cos0 =4cos

(_

y =1.sinf :A}Sin(—E

o)}
N,

2 2T
O x=r.cos0= =05

21t_2

3

: 2 f.
=1.5Ind = =5in

-

i iy |

1
3

©r=/2+y2=/(-2)2+02 =&+ 0=4=2]
f=tang (%) =" tant (_%) = tan~2(0) = [7] =[180°] ,

Notes: 8 = 180° because x < 0 and y = 0.

O = 7y = (V8 +VF = \ET2 =B = /DD =

V2

f=tan"’ (f)

tant () = (- 7)

51

6

= [150°]

Notes: 8 lies in Quadrant Il because x < 0 and y > 0.

© User. = \/x2 + y2 to get

sin

A

)

22
V3

Z

(6] Use% = -C()Ti =tan#f to get% = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User. = /x% + y? to get
@ User, = /x2 + y2 to get

© Use x =1.cosf andy = 7.sin @ to get

12 fuz% = 9]

. = 2z|

z = 2r?sinf cos 6

or

z:= 14sin(26)|

Recall the trig identity sin(26) = 2 sin 6 cos 8.
@ Factor: y2(x? + y?) = x2z%. Use 1, = \/x2 + y2 to get y2r2 = x222,

Square root both sides: yr, = +xz. Divide by x on both sides: z = +2<,
X

sin @

i

X

Use

= tan 6 to get

Z=+r.tanf|
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Solutions

Chapter 8, Part A

€ x=1.cos8 =4cos(—g) =4(—23) =23
4

y =1.sin6 =4sin(—§) =

2 Aoz
O x=1.cos0==cos===
36 703 U3

: 2 Lan2mil. 2 (VB 3 1
y———rcsm9=-sm—=—(—)=— Z = E
3 - Pt

.= /x2+y2 = /(=22 + 02 =V4+0=+4=[2]
g =&ang, (%) =tan® - (_%) = tan~1(0) = [@] = [180°] ,

Notes: 8 = 180° because x < 0 and y = 0.

O - [FHi= (Vo) +V7 = VETZ =B = /DD =[212

g=tan G) =tan"" (—_\/;—2-6) =i (—%) = 5?” = , |lz=+3

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.

© User, = /x2 + y2 to get|z = x% + y?|

in@

(6 Use% = :oﬁ = tan @ to get% = 1. Multiply by x on both sides: [zy = x]

Chapter 8, Part B

@ User. = /x2 + y2to get|r2 + 22 = 9|
© User, = \/x2 + y? to get[r, = 2z]
© Usex =7.cosfandy =1,sinf to get|z = 2r2sin6 cos f|or|z = 2 sin(20) |
Recall the trig identity sin(26) = 2 sin 6 cos 6.

@ Factor: y?(x? + y?) = x?z% User, = \/m to get y2r2 = x2z2,

Square root both sides: yr, = +xz. Divide by x on both sides: z = + 2%,
X

sin @
UseZ =
x cos @

=tan6 toget|z = +r.tan@|
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Solutions

Chapter 8, Part A

€ x=1.cos0 =4cos(—g) =4(§) =(2v3
4

y =x:8inb =4sin(—§) £

2T

2
© x=1.cos0 ==cos=
3 3

: 2 Lan2mil 2 {3 3
y=rcsm9=§sm?=§

©:.= FHyi = I TR =AT0=vi=[]
g =anrs (%) =tan= (_%) =tan~(0) =[r]= 3

Notes: 8 = 180° because x < 0 and y = 0.

O - /777 = (—V8) +VE = VBT 2 =B = [ =[212

0= tan+ (%) —i o (_ijg) — i (—%) = 5?” = , lz=+3

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.
© User, = /x2 + y2 to get|z = x? + y?|

(6] Use% = :r;z = tanf to get% = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User. = /x2 + y2 to get|r2 + 2% = 9|
© User. = /x% + y2 to get[r, = 2z]
© Usex =r.cosfandy =1.sinf to get|z = 22 sinf cos 8| or|z = r2 sin(26)|
Recall the trig identity sin(26) = 2 sin 6 cos 6.

@ Factor: y2(x? + y*) = x?z%. User, = \/m to get y?r2 = x2z2.

Square root both sides: yr, = +xz. Divide by x on both sides: z = + 2.
X

UseZ:ﬂi‘ﬁztanG toget(z = +r.tan @)
5% cos6
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Solutions

Chapter 8, Part A

Qx=r6c056=4cos(—g-)=4 iz-g)= 23
4

y =1.sin6 =4sin(—%) L

2 2T 2
©x=1.cos0==cos===
g0 03 03

; 25 L2270 2 (V3 3 1
= = - —_—=——)=|— 7 = —=
y ICSIHG 3Slrl3 3( ) 3

Or=/x?+y2=/(-2)2+02 =4+ 0 =4 =[2]
§ =tant: (%) Ertan® (_%) =tan+(0) = [f]= ,

Notes: 8 = 180° because x < 0 and y = 0.

O =777 = [(—V8) +VT = VET2=\B= /D =[22
s -1 {X\ = N2\ el N d ST 5 i
6 = tan (;)—tan (_—\/g)—tan (\/5)— : = [150°%).; .|z =43

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.

© User, = /x2 + y2to get|z = x% + y?|

mn

(6 Use% = ;Sg = tan @ to get% = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User. = /x2 + y2 to get|r2 + z2 = 9|
© User, = /x2 + y2 to get[r, = 22|
© Usex =7, cosf and y = sin 6 to get|z = 272 sin f cos | or |z = 1.2 sin(26) |
Recall the trig identity sin(26) = 2 sin 6 cos 6.

@ Factor: y2(x? + y?) = x?z%. User, = \/m to get %12 = x2z22,

Square root both sides: yr, = +xz. Divide by x on both sides: z = + <.
X

sin @
UseZ =
x cos 6@

= tanf toget|z = +r.tan |
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Solutions

Chapter 8, Part A

AL
O x=1.cos6==cos===
30203 U3

: 2i 12T 2 (V3 3 !
T a8 & e 28 Z7=—=
y—rcsm9—3sm3—3( )— 3

Or.=/x2+y2=/(=22+02=V4+0=V4=[2]
9=tan_1(§)=tan‘1(_%)=tan‘1(0)== ,

Notes: 8 = 180° because x < 0 and y = 0.

0= /77y = (Vo) +V = 6T =B = /DD =[22

0 —tn (%) —tan ! (_ij:-g) o (——%) =|2Z| = , |z=+3

6

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.
© User, = /x2 + y2toget|z = x% + y?|

(6 Usei— = z:;ee = tan 6 to get% = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User, = /x2 + y2 to get|r2 + 2% = 9|
© User, =\/mtoget T, = 22|
© Usex =7, cosf and y = sin 6 to get|z = 272 sin § cos | or |z = 1,2 sin(26) |
Recall the trig identity sin(26) = 2 sin 6 cos 6.

@ Factor: y2(x? + y*) = x?z% User, = \/_m to get y?r2 = x2z2.

Square root both sides: yr, = +xz. Divide by x on both sides: z = + <.
X

in 6
Use%= ::;9 = tan6 to get|z = +r.tan 6|
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Solutions

Chapter 10, Part B

62 2 2 62 2
QVZf— f+af=a x5y3z+ﬁx5y z+—xyz

dz2 0x2
0

g (axxyZ)+§;(a"’yxyz)+§z(axyz)

Vif = (5x4y32) = (3x5y22) +—(x y3)

Tl — 20x3y3z + 6x5yz + 0 = [20x3y32 + 6x°yz| = |2x°yz(10y? + 3x*)

ay2 i 9z2  9xZxy ayZE d0z% xy

01502 d. [ z2 d z ) z=
<) a2 e
dx \9x xy dy \oy xy 0z \0z xy ox X2y

@vig=le le Fo_ P 02, 05

)5 e ) 5 )

z_ﬁizi_z_zz( )=£(_1_
vg_x3y+xy3+xy xy + +1 xy

il 1
x2+ﬁ+;2_)

4 L —1__—2.___1 il ey
Notes.a;—dxx e =——dhde 2 (
2
Ovh=20+ 0+ =Py D) s

62 922
Vzhzai[ (x? + y? +zz)] [ (x? + y? +zz)]

V2h = = (2 x)+—(2y)+—(2z)_2+2+2_[§|

op 1 9%p
szp_r 6rc( )+7W+622

Cor,
50

= sne) s 5 ertond)
Vp—rcarc(rCa 12z sm9)+ 25 727450

Ve = (rCZrCz sin ) + = 238

V2p=z _c;me_a_(z 2)+

c Tc

z%sin6@

Vep =

(4r.) + z%(—sin0) + 2r?sin 6 (1)

t e e
0 Ak ==

(x + y? +z2)+ (x + y?% + z2)

[ (x? + y? +zz)]

9 (3 VoBi
+£(-a—zrcz sme)
( zzcosH)+—(rC 2z sin )

2 i i
o (cos 0) + 2rF sin 92 == (2)

V2p = 4z%sin@ — z%sin @ + 217 sinf = [3z*sin 6 + 22 sin 6| = | (322 + 212) sin 6

2
ok Al Zaq) 1 0°q il 0 ( )
®V g5 267‘( ar +r25in2(p692+r251n<p6<p ln(p

Z =—1—i< 22 12 ¢os 6 sin ) -
Veg = — et 0 sin @

a (0 ) 1 a( )
= s @ sin
+rzsin2(p69(66r cosf sing = smq) r co ¢
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Calculus with Multiple Variables Essential Skills Workbook

LT
Viq = -——(r22rc05951n<p) +m_( r2 sin 6 sin @) +rzsm(p5—q;(sm<pr cos 6 cos @)
Vg = C—(’—S—%m—‘pi(2r3) :2;% 2 (sin8) + :ZCT:O O (sin ¢ cos @)
Vg = ggg&.z — ﬁcos 0 + %(cos2 @ — sin® @)
V2q = 6cosBsing — :’:Z Cos:;?:% — cosfOsing = 5cosfsing — :)HSZ COSZ:::%
2

V2q = cos @ (5 sin¢@ — =Ep C:ii:) = :’:Z (5sin? ¢ — 1 + cos? @)

2q—sm(Ssm @ =[4 cos 6 sin ¢
Note: sin? ¢ + cos? ¢ = 1 leads to cos2 @ —1 = —sin? @ or —1 + cos? ¢ = —sin® g.
@ VoW = ;"_ZE:( § ?3‘:'/) ar T2 silnzwgze‘:’ N rzslimpai(p(Sin(pg_‘;:)

2 =i_€_( 2.0 ) diaila (a
Viw = S —(7" 5,7 tanf cotgp | + r2sm2<pae oL tan6cot<p)

2o diilea oy 3
Viw =5 —(r"4r> tan 6 cotg) +

d
g (sm Q@ a—r tan 6 cot <p)

2 (r*sec? 6 cot Q) +

—( r* sin ¢ tan 8 csc? @)

r2sinZ ¢ 96 2sing dg
tan6 coto 0 5 r* cotg a r*tan@ 0
T2 or ( ) r2sinZ ¢ (Sec 9) r2sing dg (CSC (P)

tan @ cot 2 cot 0
V2w=LT§°—¢20r4+rsi%f25ec29tan6—r a byl 2 csc @ cot @)

V2w = 2072 tan 6 cot @ + 2r2 sec? O tan 6 csc? ¢ cot @ + 2r? tan 6 csc? ¢ cot @

V2w = [2r? tan 6 cot ¢ (10 + sec? 8 csc? ¢ + csc? @)

df d

Notes: Use the chain rule EE = df aZ with u = sec6 and f = u? = sec? 0 to see that
df d ) d il A P

— e = secOtanf = 2sec” ftané6.

desec b= L desec@ 2Uu

Chapter 10, Part C

@Vr=fa_f+§ 1 .a_f+(plaf—r—r+0+0 r(1)+0+0==l
ar rsing 06 rdp

VT:(ii+ii+R1)Jx2+y2+ZZ

Vr=i 2 §y7 ¥ 2 +]—-f2+y2+z2+k——\/x2+y2+z2

b ~ i k i:

T e N ¥ zk £ xi+yj+z .
m-i- 1[x_-Z.*_yZ_§_ZZ + /x2+y2+22 \/;2+y2+22 r

——— e
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Solutions

~ F 1 a_f —_—
Notes: T = ||E||f = r# (see Chapters 4 and 7) such thatT = = Use the chain rule = =

‘;{l‘;anhu—x +y2+z2andf=Vu= Jx% +y? + 2% to see that

X

a ___ _—)-C—-: :
ﬁ2+y2+zz—ax \/_ (x +y% +2%) (2x) Vi Jxity+z?

@V-i"=7-r?=—1—i(r2r)+0+0=—1-i(r3)=i3r2=
v (xd+

t=V- y]+zk)——x+ y+—z—1+1+1—
@vrt=12(r2r 2) 4040 =32 (72r) = 555 2r° = ;6r° =[6]

2
i = VZ(\/x2 +y2+22) = Vz(x2 +y? +2%)
Vzrz— (x + y? +zz)+ (x + y? +zz)+ (x + y?% + z%)
V2r2=a [ (x% + y? +zz)] [ (x% +y? +22)]+ [—(x + y? +Zz)]

22__ =l — — =
Vr—ax2x+ay2y+6222 2+2+2=[6]

@V-(ri’)=V’-r(rf)=V-r2f———(r r2)+0+0-—— rt) =5 4r® = [4r]
V- () =V [x2 +y% + 22(xi + yj + zK)]

V- (f) = V- (adyx? + y2 + 22 + yjya? + 2 + 2% + zk{x? + y2 + 22)
= = d 0 d

V() =22+ 72 + 2 + oy a +yE + 22+ Sz a? + Y2 + 2
V-

2 2 2
2 2 2 7 e B 2 2 ey e o 2 2 ST
(D) =P +YF P A et P Y A 2t st P P 2 s

o > > R i 5 B
N-(r)=3x“ +y°+2 +—_\/m—3\/x2+y2+zz+\/x2+y2+zz

V- (P) =|4/x2 + y2 + 22| = [4r]

10 d d
O viri =22 (r22r3)+0+0 =5 (3% = 5 23r* = 31213 = [127]

2 0r
3
V2(xZ +y2 +22) = V2(x? + y? + 22)%/2
y

62
VZrd = = (x + y2 + 22)*/2 4 - (x +y? + 2232 + 2 (x g e g

273 = 2 [2 (2 4 y2 4 52)3/2| 4 2 2Dl DGR ?
- Lt L et e e
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Solutions

Chapter 8, Part A

€@ x =1.cos6 =4cos(—%) =4(—23-) =[2V3
4

y =1.sinf =4sin(—§) =

2 2T 2

©x=1r.cos0==cos===

3 3 L3
—rsin@-zsinzn—2(3)— 2 z——l
Vosite e P T A |5 : 3

©r=/x2+y?=/(-2)2+02=Va+0=V4=[2]
9=tan'1(-z-)=tan‘1(:05)=tan‘1(0)== ;

Notes: 8 = 180° because x < 0and y = 0.

O = /7777 = [(-V8) +VT = 6T 2 =B = /DD =212

g=tan" (%) =tan" " (_ng) =Han, - (—%) = 5?“ = , |lz=+3

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.
© User, = /x2 + y2toget|z = x% + y?|

(6 ) Use-ii = ::;g = tan 6 to get% = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User, = /x2 + y2toget|r2 +z2 = 9|
@ User. = /x2 + y2 to get[r, = 2z]
© Usex =1.cosf andy = r,sin 6 to get|z = 2r2 sin 6 cos O |or|z = r2 sin(26)|
Recall the trig identity sin(20) = 2 sin 6 cos 8.

@ Factor: y2(x? + y?) = x2z%. User, = \/m to gety 2= "x2z>

Square root both sides: yr. = +xz. Divide by x on both sides: z = 4+ 2%,
X

UseZ = 322 — tan 6 to get Z = tr.tan@|
x cos 6@
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Solutions

Chapter 8, Part A

Ox—rcc059—4cos( ) 4(—?)=2\/§

y=rcsin9=4sin(—%)=4(—%)= ,lz=6

2B [ 3 1
szrCCOSB——cos— ==z)s)w

Chl:i

w |

2wl 2 (3 3 1
y—rcsm9—-sm——-3-? =|— Zrere

B,
© .= 7y = (2P P = ViT0=i=[2

6=tan‘1(-z-)=tan 1(_)—tan 1(0) =[] =[180°] ,

Notes: 8 = 180° because x < 0 and y = 0.

0= /7777 = (V) +VF = V6T Z =B = /DD -

0=tmn (%) —& (_ng) =Han, (— %) = 5?” =150

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.

© User. = x2 + y2to get|z = x% + y?|
@Us

Chapter 8, Part B

@ User. = \/x2 + y2 toget|r? + 2% =9|
@ User. = /x2 + yZ to get|r, = 2z|

)

2v2

I
™

Z

=tan@ to get— = 1. Multiply by x on both sides:

© Use x =1, cosf andy = 1, sinf to get|z = 212 sin 6 cos 6

or

z:= 12sin(20)]

Recall the trig identity sin(26) = 2 sin 6 cos 6.

@ Factor: y*(x* + y?) = x?z%. Use 1, = \/x2 + y? to get y2r2 = x2z2

Square root both sides: yr, = txz. Divide by x on both sides: z = + &_

sin @

Y Ssippis =
Usex =— tan 6 to get|z = +r.tan O

X
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Solutions

Chapter 8, Part A

€ x =1.cosb =4cos(—§) =4(i2-§) =12v3
4

y =1.5in6 =4sin(—g) -

2T

2
© x =1.cos0 ==cos—
361473

yzrcsin(?:gsinz?n:g(—g’) i3 ;
Or.=/x2+y?=/(-22+02=V4+0=V4=[2]
9=tan‘1(§)=tan'1(_12)=tan‘1(0)== ’

Notes: 8 = 180° because x < 0 and y = 0.

O = 777i= [(—8) +VT =\ET2=\B= /D =[22

0=tan— G) =tan"* (%) =ian (—%) =|2Z| = sz aald

6

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.

© User, = /x2 + y2to get|z = x% + y?|

sin @

(6 Use% == 0 to get% = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User. = /x2 +y2 toget|r2 + z2 = 9|
© User. = /x% + y2 to get[r, = 2z]
© Usex =1,cosf andy = 1, sinf to get|z = 22 sinf cos B or|z = 12 sin(26) |
Recall the trig identity sin(26) = 2 sin 6 cos 8.

@ Factor: y2(x? + y?) = x?z%. User, = \/m to get 212 = x222,

Square root both sides: yr. = +xz. Divide by x on both sides: z = + 2.
X

UseZ =322 — tang to get|z=+r.tanf|
x4 scosf
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Solutions

Chapter 8, Part A

A
©x=1r.cos0==cos—===
3¢ 0% T3

: 2 Jan2mil 2 (3 3 A
y—rcsme—;sm?—g(—)—— Z

Or=Vx*+y2=/(-2)2+ 02 =4+ 0 =4 =[2]
9=tan‘1(§)=tan‘1(_%)=tan'1(0)== ;

Notes: 8 = 180° because x < 0 and y = 0.

or=,/x2+y2=J(—v'é)2+\/72=\/ﬁ=\/§=,/(4)(2)= 22
9=tan'1(§)=tan'1(_i;2—g)=tan‘1(—‘/i§)= 2 =150°] , |z=+3

6

Notes: 0 lies in Quadrant Il because x < 0 and y > 0.
© User. = Jx2 + y2toget|z = x% + y?|

(6] Use% = i:;g = tanf to get-Z;X = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User, = \/x2 + y2 to get|r2 + z2 = 9|
© User, =\/mtoget . = 2z|
© Usex =71.cosfandy =r.sinf to get|z = 2r2 sinf cos f|or|z = 2 sin(20) |
Recall the trig identity sin(26) = 2 sin 6 cos 6.

@ Factor: y2(x? + y?) = x222. Use 1, = /x% + y? to get 21,2 = x222,

Square root both sides: yr. = £xz. Divide by x on both sides: z = + 2=,
X

Usel =220 &ni toget|z = +r.tan 6|
X+ ic0s@
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Solutions

Chapter 8, Part A

€ x=1.cos0 =4cos(—§-) =4(§) =(2V3
4

Y =g=sin'e =4sin(—g) =

2 - S 1
9x=rccost9=—cos—:— __)= G

3 3 3 ] 3
=1 sine—zsinzn—z(ﬁ)— 2 z——l
Ye=le e s N i B [ 3

O =/x2+y2=/(-2)2+02=v4+0=V4=[2]
6=tan‘1(§):tan‘l(%):tan'1(0)== ;

Notes: 8 = 180° because x < 0 and y = 0.

O = /777 = (—V8) +VZ = V6T 2 =B = [ =[212

el —3 (VY = N2\ L ol Ne e SEL 5 i
0 = tan (x)—tan (_%>—tan ( ﬁ)" 6— , lz=+3
Notes: 6 lies in Quadrant Il because x < 0 and y > 0.

@ User. = /x2 + y2 to get|z = x? + y?|

(6] Use% = %— = tané to get% = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User, = \/x2 + y2 toget|r? + z2 = 9|
© User, = \/x% + y2 to get[r, = 2z]
© Usex =r,cos@andy = 1.sin6 to get|z = 212 sin cos O | or [z = ;2 sin(26)|
Recall the trig identity sin(260) = 2 sin 6 cos 6.

@ Factor: y2(x? + y?) = x2z%. User, = \/Wyz to get y?r2 = x222.

Square root both sides: yr, = +xz. Divide by x on both sides: z = + 2,
P

in@
Use%= ::;9 =tanf toget|z = +r.tan |
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Solutions

Chapter 8, Part A

AL
O x=1.cos6==cos===
30203 U3

: 2i 12T 2 (V3 3 !
T a8 & e 28 Z7=—=
y—rcsm9—3sm3—3( )— 3

Or.=/x2+y2=/(=22+02=V4+0=V4=[2]
9=tan_1(§)=tan‘1(_%)=tan‘1(0)== ,

Notes: 8 = 180° because x < 0 and y = 0.

0= /77y = (Vo) +V = 6T =B = /DD =[22

0 —tn (%) —tan ! (_ij:-g) o (——%) =|2Z| = , |z=+3

6

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.
© User, = /x2 + y2toget|z = x% + y?|

(6 Usei— = z:;ee = tan 6 to get% = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User, = /x2 + y2 to get|r2 + 2% = 9|
© User, =\/mtoget T, = 22|
© Usex =7, cosf and y = sin 6 to get|z = 272 sin § cos | or |z = 1,2 sin(26) |
Recall the trig identity sin(26) = 2 sin 6 cos 6.

@ Factor: y2(x? + y*) = x?z% User, = \/_m to get y?r2 = x2z2.

Square root both sides: yr, = +xz. Divide by x on both sides: z = + <.
X

in 6
Use%= ::;9 = tan6 to get|z = +r.tan 6|

130




Solutions

Chapter 8, Part A

€ x=1.cos6 =4cos(—z6[-) =4(‘/§) =123
4

y =75Sine =4sin(—7—6r) L

2 2T 2 1
Ox=r.cos0==cos—===(—-=)=|-=
3 3 SGgN\ 12 3
—rsinG—zsinzn—2(3)— 3 z——l
y=T s P R A Do [ 3

@ = /77Ty = [T F O VAT = V=
g —Gnr G) =tan%" (_%) =stan(0) == ;

Notes: 8 = 180° because x < 0 and y = 0.

O = 75y = |(—VB) +V7 = V6T Z =B = DD =212

0=tan’ G) = tant" (_ijg) =¢fan; (—\/%) =|Z|= , |z =43

6

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.
© User, = /x2 + y2 to get|z = x2 + y?|

(6) Useii = :;z =tan# to get% = 1. Multiply by x on both sides: [zy = x]

Chapter 8, Part B

@ User, = \/x2 + y? to get|r? + 22 = 9|
© User, = \/x2 + y2 to get[r, = 2z]
© Usex =1.cosfandy =1.sinf to get|z = 2r2sin 6 cos f|or|z = 2 sin(26)|
Recall the trig identity sin(26) = 2 sin 6 cos 8.

@ Factor: y2(x* + y?) = x?z%. User, = \/m to get y%r2 = x222,
Square root both sides: yr, = +xz. Divide by x on both sides: z = + %

sin @
Use2 =
X cos @

=tan6 to get|z = +r.tan@|
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Solutions

Chapter 8, Part A

0x=rCC056=4cos(—%)=4 -\/2—§-)= 2V3
4

y = 1.sin @ =4sin(-§) £

2 2T 2 1
Qx=rcc059=-—cos—=— ——): -

3 3 G\ 12 3
=" sin9—zsin2n—2(3)— 3 z——l
y=T s Pl b o i B [l 3

©. - 777 = (DT = VEF0 =i =[]
g =&ang. (%) Srtan® (_%) = tan~1(0) = [7] = [180°] ,

Notes: 8 = 180° because x < 0 and y = 0.

O = FTHyi = |(—VB) +V7 = V6T Z =B = DD =212

g=tan’ (%) = tan™" (_ijg) =¢fan; - (—%) =|Z|= , .z =43

6

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.
©® User, = /x2 + y2 toget|z = x% + y?|

(6 Use% = 1299 =tanf to get%-:-’ = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User, = \/x2 + y2 to get|r? + 22 = 9|
© User, = \/x2 + y2 to get[r, = 2z]
© Usex =7.cosfandy =1.sinf to get|z = 2r2sin 6 cos f|or|z = 2 sin(26)|
Recall the trig identity sin(26) = 2 sin 6 cos 6.

@ Factor: y2(x? + y?) = x?2% User, = \/x? + y2 to get y?r2 = x222,

Square root both sides: yr, = t+xz. Divide by x on both sides: z = + 2%,
X

sin @

s — —
Use o tanf to get|z = t+r.tan @ |
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Solutions

Chapter 8, Part A

€@ x =1.cosb =4cos(—16r-) =4(§) =[2V3
4

y =1.sin6 =4sin(—§) =

2T

2
© x =1.c0s0 ==cos=
3i 173

ant = 2(2) = [2

y =1.sin6 =—3—sin

©Or.=/x+y2=/(-22+02=Va+0=4=[2]
6=tan‘1(-z-)=tan"1(_%)=tan‘1(0)== ;

Notes: 8 = 180° because x < 0andy = 0.

O - 7+7i= (VB +V7' = VET2="B= /D@ =22
89— tan ! (%) —tan’ (_ij-g)=tan‘1 (——\%)= S?n = s =l

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.
© User. = /x2 + y2 toget|z = x% + y?|

(6] Use% = (S::;i = tan#f to get% = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User, = \/x2 + y2 toget|r? + z2 = 9|
© User, = \/x% + y2 to get[r, = 2z]
© Use x =7.cosf andy = 7.sinf to get|z = 212 sin 6 cos 8| or|z = r2 sin(26) |
Recall the trig identity sin(260) = 2 sin 6 cos 8.

@ Factor: y2(x2 + y?) = x?z%. User, = \/Wyz to get y2r2"="x222.

Square root both sides: yr, = +xz. Divide by x on both sides: z = + 2%,
X

in@
Usei’.z%:tane to get|z = +r.tan 6]
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Solutions

Chapter 8, Part A

2T 2
ex=r6c059——cos—:§

2r 2 (3 3 1
y—r651n9——sm—=—3-— =|— 2

erc__‘"x2+y2=m=\/r=\/z=
9=tan"1(§)=tan1( )—tan 1(0) =[] = [180°]

Notes: 6 = 180° because x < 0 and y = 0.

O = [Ty = [(—VB) +VZ = 6T I =B = /DD =[2V2

g—tanv (;yc_) — tan~ (_ijg) — 7 (— %) = 5?” =[150°] , |z=+/3

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.
© User. = x2 + y2to get|z = x% + y?|

@ Use? = "% — tang 1o get= = 1. Multiply by x on both sides:

Chapter 8, Part B

@ User. = \/x2 + y2 toget|r? + 2% =9|
© User. = /x2 + y? to get|r, = 2z|

@ Usex =r1.cosfandy = r.sinf to get|z = 22 sin6 cos B |or|z = r2 sin(26)|
Recall the trig identity sin(26) = 2 sin 6 cos 6.
@ Factor: y*(x* + y?) = x?z%. User, = \/x2 + y2 to get y2r2 = x222

Square root both sides: yr, = +xz. Divide by x on both sides: z = + &_
X

sin @
UseZ =
x cos @

= tanf toget|z = +r.tan 6|
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Solutions

Chapter 8, Part A

€ x =1.cosb =4cos(—g) =4(—§) =123
4

V. =a:sin =4sin(—§) -

2 2T 2 1 1
ex':rCCOSQ:-—COS—Z— —_—)=|--
3 3 3 2

: 2 lan2mil 2 (3 3 1
y:rcsm9=—sm—=—(—)=— A
A P

©r.=/2+y2=/(22+02=Va+0=V4=[2]
f=&ang. (%) Ertan® (_%) =tan )= [r]= ,

Notes: 8 = 180° because x < 0 and y = 0.

0= /77y = (VB +VE = VBT 2 =B = B =[212

g —tany (-z-) — (%) — (—%) = S?R = , lz=+3

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.

@ User, = /x2 + y2 toget|z = x% + y?|

© Use% = ::;i =tanf to get% = 1. Multiply by x on both sides: [zy = x]

Chapter 8, Part B

@ User, = \/x2 + y? to get|r? + 22 = 9|
© User, = \/x2 + y2 to get[r, = 2z]
© Usex =1,cosfand y = 7,sinf to get|z = 212 sinf@ cosf|or|z = 2 sin(26)|
Recall the trig identity sin(26) = 2 sin 8 cos 6.

@ Factor: y2(x* + y?) = x?z%. User, = \/m to gety 2 =rypdz2.

Square root both sides: yr, = +xz. Divide by x on both sides: z = + 2=,
X

sin @
Use2 =
X cos B

=tan6 toget|z = +r.tan@|
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Solutions

Chapter 8, Part A

Qx—rcc056—4cos( ) 4(—2—3)= 23

y=rsing =4sin(-2)=4(-3)=[z2] , [z=6

G\IFI

2T 2
© x=r1.cosb ——cos?=—3-(

|
N | =
N—r

Il

1
3

g Sn27r_2(\/§)_ 3 1l
y =1.5Inf = zsi =N o 3

er6=m=m=\ﬁt—+—:ﬁ=

g =tans: (%) —Slan® (_ ) = tan"1(0) =[7] = :

Notes: 8 = 180° because x < 0 and y = 0.

O =777 =|(—8) +VT =VETZ=\B= /DD =

g=tan (%) = tan” " (%) =Han. (— %) = 5?” = 1502

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.

© User, = /x2 + y2to get|z = x% + y?|
O Use

Chapter 8, Part B

@ User, = Jx2 +y2toget|r? + 2% =9|
@ User, = /x2 + y2 to get[r, = 22|

’

2V/2

Il
)

Z

=tanéf to get— = 1. Multiply by x on both sides:

© Usex =1.cosfandy =1.sinf to get|z = 2r2 sin § cos

or

z:= 1r4sin(20)}

Recall the trig identity sin(26) = 2 sin 6 cos 6.

€ Factor: y2(x* + y*) = x?z%. User, = \/x2 + y? to get y2r2 = x2z2,

Square root both sides: yr, = +xz. Divide by x on both sides: z = + 2=,

sin @

Use%— —tan9togetz=irctan9.

X
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Solutions

Chapter 8, Part A

Qx-——rcc056=4cos(—g)=4 £)= 23
4

y =a:sind =4sin(—g) =

AL
©x=r.cos6==cos===
36303 U3

: 2 lan2mil 2 (B 3 1
y=rcsm9=§sm?=—(—)=— e

Or.=/x2+y?=/(-22+02=V4+0=V4=[2]
9=tan‘1(§)=tan'1(_%)=tan‘1(0)== :

Notes: 8 = 180° because x < 0 and y = 0.

O =TTy = [(V8) +VF =BT ZI=B = DD =[22

< 1 (XY = Nz N el N d ST 5 A
6 = tan (x)—tan (_\/g)—tan ( @)— 6— , |z=+3
Notes: 6 lies in Quadrant Il because x < 0 and y > 0.

© User, = /x2 + y2to get|z = x% + y?|

(6 Use% = z:;z =tanf to get% = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User. = \/x2 +y2 toget|r2 + z2 = 9|
© Use . = /x% + y2 to get[r, = 2z]
© Usex =1,cosfandy = ,sinf to get|z = 2r2 sinf cos B or|z = 2 sin(26) |
Recall the trig identity sin(26) = 2 sin 6 cos 6.

@ Factor: y2(x? + y?) = x?z%. User, = m to get y2r2 = x2z2,

Square root both sides: yr. = +xz. Divide by x on both sides: z = + 2=,
X

UseZ =% — tan 6 to get[z = +r tan ]
x4 scosf
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Solutions

Chapter 8, Part A

0x=rcc056=4cos(—§)=4(—\/2§)= 2V3
y=rcsin9=4sin(—§)=4(—%)= =0
Qx=r6c059=—cosz—"=§(—§)= —%
y—rcsme——smz—n=3(?3)=?3 ; Z:—é
er6=m=m=m—:ﬁ=

0 =tanT" (%) =tans (_ ) =stan™ +(0):=

Notes: 8 = 180° because x < 0 and y = 0.

O =7y = (V) +VF = V6T Z =B = /D@ -

0=t (—yJ;) =fan (ﬂ) =Han;

-Vé

5w

e

=[150°

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.

© User. = Jx2 + y2 to get

Zi= eyl

GUS =

Chapter 8, Part B

@ User. = \/x2 + y? to get

72 Foz% =9

@ User, = /x2 + y2to get

T, = 2z|.

© Usex =1.cosb and y = 1, sinf to get

’

2v2

=tan6 to get— = 1. Multiply by x on both sides:

z = 2r?sin6 cos @

or

zi= r2sin(26)]

Recall the trig identity sin(26) = 2 sin 6 cos 8.

@ Factor: y2(x? + y?) = x?2z%. User, =

VX&2+ y2 togety A e lse

Square root both sides: yr. = +xz. Divide by x on both sides: z = + ﬁ,

sin @

UseZ = = tan 6 to get
X 6

z = +r.tan 6|

X
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Solutions

Chapter 8, Part A

€ x=1.cos0 =4COS(_%)=4 _E)z 23
y =7:5in@ =4sin(—%) 24

SRzl 1
szrcc059=—cos— 2=z)slw

g 27r_2(3)_ 3 .
y =1.sinf = sm == = 3

©Or.=/x2+y2=/(-22+02=Va+0=4=[2]
9=tan'1(§)=tan1(_)—tan 1(0) =[] =[1802] 7,

Notes: 8 = 180° because x < 0 and y = 0.

O - /7777 = [(—VB) +V7 =\EFZ =B = /DD =212

g —tans (%) —tan™ (%) — i (— %) — -56£ =[150°] , |z=+3

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.
@ User. = /x2 + y2 to get|z = x? + y?|

@ Usei= = tané to get— = 1. Multiply by x on both sides:

Chapter 8, Part B

@ User, = \/x2 + y2 toget|r? + z2 = 9|
© User, =\/mtoget 1, = 2Z|
© Usex =r.cosfandy =1,.sinf to get|z = 2r2sin6 cos f|or|z = 2 sin(20)|
Recall the trig identity sin(260) = 2 sin 6 cos 6.

@ Factor: y2(x? + y?) = x2z%. User, = \/Wyz to get y2r2 = x222.

Square root both sides: yr, = +xz. Divide by x on both sides: z = + 2%,
b

sin @
Use2 =
x cosé@

= tan6 to get|z = +r.tan@|
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Solutions

Chapter 8, Part A

A
Il
ey
25
=
DD
Il
S
.
B
[
|
N
Il
|
N |-
SN—r
Il
b
N
N
Il
(o))

2 Pl R
O x=1.cos6==cos===

3 3 U3
—rsine—zsinzn—2(3)— 3 z——-l-
Pimile T = Pl B o T e |5 ) [ 0 3

Or=/2+y2=/(-2)2+02=va+0=4=[2]
9=tan‘1(§)=tan"1(_%)=tan‘1(0)== ;

Notes: 8 = 180° because x < 0 and y = 0.

O =77y = [(VB) V7 = V6T I =B = /DD =[2V2
0 =—tanv (%) = tane (_ng) —Hny (—%) = 5?” = , lz=+3

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.
© User, = /x2 + y2 to get|z = x% + y?|

(6] Use% = 123 = tané to get% = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User, = \/x2 + y2 to get|r2 + z2 = 9|
© User, = \/x2 + y? to get[r, = 2z]
© Usex =7.cosfandy =1,sinf to get|z = 2r2sinf cos f|or|z = 2 sin(20) |
Recall the trig identity sin(26) = 2 sin 6 cos 6.

@ Factor: y2(x? + y?) = x2z%. User, = m to get y2r2 = x2z2.

Square root both sides: yr, = +xz. Divide by x on both sides: z = + 2%,
X

UseZ = 222 — tan 6 to get[z = £ tan )
x4 icos6
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Solutions

Chapter 8, Part A

2T 2
ex=r6c059——cos—:§

2r 2 (3 3 1
y—r651n9——sm—=—3-— =|— 2

erc__‘"x2+y2=m=\/r=\/z=
9=tan"1(§)=tan1( )—tan 1(0) =[] = [180°]

Notes: 6 = 180° because x < 0 and y = 0.

O = [Ty = [(—VB) +VZ = 6T I =B = /DD =[2V2

g—tanv (;yc_) — tan~ (_ijg) — 7 (— %) = 5?” =[150°] , |z=+/3

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.
© User. = x2 + y2to get|z = x% + y?|

@ Use? = "% — tang 1o get= = 1. Multiply by x on both sides:

Chapter 8, Part B

@ User. = \/x2 + y2 toget|r? + 2% =9|
© User. = /x2 + y? to get|r, = 2z|

@ Usex =r1.cosfandy = r.sinf to get|z = 22 sin6 cos B |or|z = r2 sin(26)|
Recall the trig identity sin(26) = 2 sin 6 cos 6.
@ Factor: y*(x* + y?) = x?z%. User, = \/x2 + y2 to get y2r2 = x222

Square root both sides: yr, = +xz. Divide by x on both sides: z = + &_
X

sin @
UseZ =
x cos @

= tanf toget|z = +r.tan 6|
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Solutions

Chapter 8, Part A

. 2 T 1 3
y=rcsm9=4sm(—g)= (—E)z Filz=6
rae 810 S A
Qx=r6c059=—cos—:—(——)= -
3 3 FGg\ e 3
=T, sine—zsinzn—2(3)— : z7=—=
Vit A i e BB [ 3

Or.=/x2+y2=/(-2)2+02=V4+0=V4=[2]
g =T G) Ertan™ (_12) =stan=(0) = [T]= ,

Notes: § = 180° because x < 0 and y = 0.

O = Fryi= |(—8) +V7 = \ETZ="B= /@O =[22

= S { Yy Nz el N BEIC 5 2o
6 = tan (x)—tan (_\/g)—tan ( \/5)_ : =[150%).. . .|z =Al3
Notes: 6 lies in Quadrant Il because x < 0 and y > 0.

© User, = /x2 + y2toget|z = x% + y?|

(6 Use% = :;3 =tan@ to get% = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User, = Jx2 +y2toget|r? + 2% =9|
@ User, = x2 + y2 to get|r, = 2z|
© Usex =7.cosfandy =1.sinb to get|z = 2r2 sin6 cos §|or|z = r? sin(26) |
Recall the trig identity sin(26) = 2 sin 6 cos 6.

@ Factor: y?(x? + y?) = x2z%. User, = \/x2 + y2 to get y2r2 = x2z2,

Square root both sides: yr, = +xz. Divide by x on both sides: z = + 2.
X

UseZ =% — tan 6 to get[z = +r, tan ]
x4 scosf
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Solutions

Chapter 8, Part A

et
Il
a3
L)
=
D
Il
s
a
=
N
[
il
Il
|
N
N
Il
b
N
N
Il
(@)

o5 R
N |-
N
Il
w |

2 P 2

©x=1.cos0==cos===

3 3 L3
—rsine—zsinzn—z(g’)— 3 z——l
Dos=tle Ty Bl B Al 1 [ 3

O = /75 [ =it 0=4a =[]
g'=kany. (%) — (_%) = tan~1(0) = [@] = [180°] ,

Notes: 8 = 180° because x < 0 andy = 0.

O - /7= (Vo) +VT = VBT 2 =B = /DD =[212

g=tan— (%) — (_ij_é) =Han, = (—%) = 5?” = , lz=+3

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.
© User, = /x2 + y2 to get|z = x% + y?|

(6] Use% = :)—r;i- = tané to getz% = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User, = /x2 + y2toget|r? + 2% = 9|
© User, = /x2 + y2 to get[r, = 2z]

© Usex =7.cosfandy =1.sinf to get|z = 22 sinf cos 8| or|z = rZ sin(26)|

Recall the trig identity sin(26) = 2 sin 6 cos 6.

@ Factor: y?(x* + y?) = x*z%. User, = \/x% + y2? to get y2r2 = x2z2,

Square root both sides: yr, = +xz. Divide by x on both sides: z = + 2,
X

Use2=s_m—9=tan9 toget|z = +r.tan 6|
x cosé@
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Solutions

Chapter 8, Part A

Ox—rcc059—4cos( % 4(—@)= 2V3
y=rcsin9=4sin(—%)=4(—-§—)= Fulz=6
Qx—rCCOSB——cosz—" g(-%): L

2mil 2 (V3 3 1
y—rcsm€—-sm—=—7 =|— zZ=—x

3
=W=J(—2)2+02=\/4+0=ﬁ=

6 =tant: G) —tan® (_ ) =tan=(0) = [m] = :

Notes: § = 180° because x < 0 and y = 0.

O - [Fryi= (VB +VZ = VBT Z =B = OO =[212

g =tan" (x) = tan (f%) ={an (— %) = -Szn = 1502

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.

© User, = /x2 + y2 toget|z = x% + y?|
O Use=

Chapter 8, Part B

@ User. = /x2 + y2 to get|r? + z% = 9|
@ User, = /x2 + y2 to get|r, = 2z]

’

Z =3

=tanf to get— = 1. Multiply by x on both sides:

© Usex =1.cosfandy =1.sinf to get|z = 212 sin 6 cos 6

or

z:= r4sin(20)}

Recall the trig identity sin(26) = 2 sin 6 cos 6.

@ Factor: y*(x? + y*) = x?z%. User, = \/x2 + y2 to get y2r2 = x272,

Square root both sides: yr, = +xz. Divide by x on both sides: z = + 2.

sin @

Use2 = —tan9togetz=irctan6.
X cosé@

X
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Solutions

Chapter 8, Part A

€ x =1.cos8 =4cos(—g) =4(‘/§) =2V3
4

y =1.5in6 =4sin(—§) =

2 21 2
O x=r1.cos6==cos===
§e 105 IU3

: 2 an2mil 2 3 V3
yzrcsmezgsm ( )

==2
©r=/2+y2=/(-2)2+02=Va+0=4=2]
9=tan“1(§)=tan‘1(_%)=tan‘1(0)== ;

Notes: 8 = 180° because x < 0 and y = 0.

O =77y = (Vo) +V = V6T =B = /DD =[22

= =8 B 2N =S5 [ AU T I 1y 1 ol 5 A
0 = tan (x)—tan (_\/g)—-tan ( ﬁ)" : =[150°] , |z=+3
Notes: 6 lies in Quadrant Il because x < 0 and y > 0.

© User, = /x2 + y2 to get|z = x% + y?|

(6] Use% = ::;3 = tanf to get% = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User, = \/x2 + y2 to get|r2 + z2 = 9|
© User, =\/mtoget T, = 2z|.
© Usex =r.cosfandy =1,sinf to get|z = 2r2sin6 cos f|or|z = r2 sin(26) |
Recall the trig identity sin(26) = 2 sin 6 cos 6.

@ Factor: y2(x? + y?) = x222. Use 1, = \/x% + y? to get y2r2 = x222,

Square root both sides: yr, = +xz. Divide by x on both sides: z = + 2=,
X

sin 8
UseZ =
X cos 6@

= tanf to get|z = +r.tan 6|
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Solutions

Chapter 8, Part A

€ x =1.cos8 =4cos(—g) =4(?) =(2v3
4

y =7.sind =4sin(—g) L

2 2T 2
©x=1r.cos0==cos—===
3o 0% T3

: 2 Lan2mil 2 (3 V3
y=rcsm9=§sm?=§( )

PN roreeit ey e i U
g o G) =rtans (_%) = tan~1(0) = [7] = [180°] ,

Notes: 8 = 180° because x < 0 and y = 0.

O =77y = [(—VB) +VZ = V6T =B = /DD =[2V2

0 =rtan" G) — tane (—_\/—_-jg) =Han - (—%) = 562 = , |z=+3

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.
© User, = /x2 + y2 to get|z = x% + y?|

(6] Use% = z::;i = tanf to get% = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User, = /x2 + y2 to get|r2 + z% = 9|
© Use . = \/x2 + y? to get[r, = 2z]
© Usex =7.cosfandy =1,sinf to get|z = 2r2sin6 cos f|or|z = 2 sin(20) |
Recall the trig identity sin(26) = 2 sin 6 cos 6.

@ Factor: y2(x? + y?) = x222. Use 1, = \[x% + y2 to get y?r2 = x222,

Square root both sides: yr, = +xz. Divide by x on both sides: z = + 2=,
X

UseZ = 328 — tan g to get[z = +7.tan 6|
x cos@
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Solutions

Chapter 8, Part A

€ x=1.cos0 =4cos(—g) =4(§) =(2v3
4

y =1.sin6 =4sin(—g) =

2 22

©x=1.cos0==cos===

3 3 L3
—rsine—zsinzn—z(g’)— 2 z——l
ostle g = Pl B ) 5 [ 3

Or=/x2+y2=/(-2)2+02=V4+0=V4=[2]
9=tan‘1(§)=tan“1(_%)=tan‘1(0)== ;

Notes: 8 = 180° because x < 0 and y = 0.

O - /77 = |(—V8) +VE = V6T 2 =B = /DD =[212
6=tan‘1(§)=tan‘1(_£jg)=tan‘1(——\/i§)= 5?" — 1505 a0 2z 3

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.
© User, = /x2 + y2 to get|z = x? + y?|

(6] Use% = j:;i = tané to get% = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User, = /x2 + y2toget|r? + 2% =9|
@ User, = /x2 + y2 to get[r, = 22|

@ Usex =1.cosf andy =1, sinf to get|z = 2r? sinf cosf|or|z = 2 sin(26)|
Recall the trig identity sin(26) = 2 sin 6 cos 6.
@ Factor: y?(x* + y?) = x?z%. Use 1, = \/x2 + y2 to get y2r2 = x222,

Square root both sides: yr, = +xz. Divide by x on both sides: z = + 2,
X

in 6
UseZ =" =tanf toget|z = +r_.tan H}
x4 icos6
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Solutions

Chapter 8, Part A

2 2T 2 1
O x=r.cos6==cos===(-=)=|—-=
3 3 oG\ g 3
—rsinH—?‘sinz”—z(3)—\/§ z-'—l
Vossite o Pl P g |5 e 3

O~ 75 = [T = VATT =vE=[2
8 =tant: (%) Ertan (_12) = tan"1(0) = [7] =[180°] ,

Notes: 8 = 180° because x < 0 and y = 0.

O--/7+)° zz\/(_\/g)2+\/§2=\/6—-|_-_=\/§=,/(4)(2)= 2V2
9=tan‘1(%)=tan'1(_ijg)=tan‘1(—%)= 5?” — 1503 ar iz a3

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.
© User, = /x2 + y2toget|z = x% + y?|

(6) Use% = z:;(; = tan @ to get% = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User, = /x2 + y2 to get|r2 + 2% = 9|
© Use . = /x% + y2 to get[r, = 2z]
© Usex =1.cosfandy = r,sin 6 to get|z = 212 sin 6 cos 6| or |z = 1.2 sin(260)|
Recall the trig identity sin(26) = 2 sin 6 cos 4.

@ Factor: y2(x? + y?) = x?z%. User, = \/m to get y?r2 = x2z22,

Square root both sides: y7, = +xz. Divide by x on both sides: z = + 2.
X

sin @
UseZ =
cos @

X

= tan6 to get|z = +r.tang|
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Solutions

Chapter 8, Part A

€ x =1.cos8 =4cos(—g) =4(‘/§) =2V3
4

y =1.5in6 =4sin(—§) =

2 21 2
O x=r1.cos6==cos===
§e 105 IU3

: 2 an2mil 2 3 V3
yzrcsmezgsm ( )

==2
©r=/2+y2=/(-2)2+02=Va+0=4=2]
9=tan“1(§)=tan‘1(_%)=tan‘1(0)== ;

Notes: 8 = 180° because x < 0 and y = 0.

O =77y = (Vo) +V = V6T =B = /DD =[22

= =8 B 2N =S5 [ AU T I 1y 1 ol 5 A
0 = tan (x)—tan (_\/g)—-tan ( ﬁ)" : =[150°] , |z=+3
Notes: 6 lies in Quadrant Il because x < 0 and y > 0.

© User, = /x2 + y2 to get|z = x% + y?|

(6] Use% = ::;3 = tanf to get% = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User, = \/x2 + y2 to get|r2 + z2 = 9|
© User, =\/mtoget T, = 2z|.
© Usex =r.cosfandy =1,sinf to get|z = 2r2sin6 cos f|or|z = r2 sin(26) |
Recall the trig identity sin(26) = 2 sin 6 cos 6.

@ Factor: y2(x? + y?) = x222. Use 1, = \/x% + y? to get y2r2 = x222,

Square root both sides: yr, = +xz. Divide by x on both sides: z = + 2=,
X

sin 8
UseZ =
X cos 6@

= tanf to get|z = +r.tan 6|
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Solutions

Chapter 8, Part A

€ x =r.cosb =4cos(—g) =4(\/7§) =23
4

y =1.sin@ =4sin(—§) =

2 2T 2
O x=r.cos0==cos—===:
g 0g 0U3

: 2 Lan2mil 2 {3 3 i Al
y=rcsm9=gsm?=——2— =|— z'= =

Or.=/x2+y2=/(-2)2+02 =2+ 0=V4=[2]
9=tan‘1(§)=tan'1(%)=tan‘1(0)== ,

Notes: 8 = 180° because x < 0 and y = 0.

O =TTy = [(—V8) +VE = ETZI=E = @D =[22

g=tan (i—) =tan" " (%) =ian (—v-l—g) =|2Z| = v lz el

6

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.

© User, = /x2 + y2toget|z = x% + y?|
e
@Use;—

g Zy = . :
> = tan 6 to get== 1. Multiply by x on both sides: .

sin
Ccos
Chapter 8, Part B

@ User, = /x2 + y2 to get|r2 + 2% = 9|
© User. = /x% + y2 to get[r, = 2z]
© Usex =7,cosfandy = ,sinf to get|z = 2r2 sinf cos B or|z = 2 sin(20) |
Recall the trig identity sin(26) = 2 sin 8 cos 6.

@ Factor: y2(x? + y?) = x?z%. User, = m to get y?r2 = x222,

Square root both sides: yr, = +xz. Divide by x on both sides: z = + 2.
X

sin @
UseZ =
X cos @

= tan6 to get|z = +r.tan 8|
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Solutions

Chapter 8, Part A

2 2T 2
O x=r.cos6==cos===<
36Uy 0u3

: 2 lan2mil 2 B V3 1
y-——rcsmezgsm?:—(—): z =%

Or.= /2 +y2=(-22+02=VE+0=V4=[2]
6=tan“1(§)=tan‘1(_%)=tan‘1(0)== ,

Notes: 8 = 180° because x < 0 and y = 0.

O = 777i= [(—8) +\T =\ET2=\B= /O ®@ =[22

=tan" (%) —tan ! (f/—_—jg) —tn, (—%) ~ §6£ = , |lz=+3

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.
© User, = /x2 + y2to get|z = x% + y?|

(6 Use-}yz = z:;z =tanf to get% = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User. = \/x2 +y2 toget|r2 + z2 = 9|
© User. = /x% + y2 to get[r, = 2z]
© Usex =7,cosfandy = ,sinf to get|z = 2r2 sinf cos B or|z = 2 sin(26) |
Recall the trig identity sin(26) = 2 sin 8 cos 6.

@ Factor: y2(x? + y?) = x?z%. User, = m to get y?r2 = x2z2,

Square root both sides: y7. = +xz. Divide by x on both sides: z = + 2.
X

sin @
UseZ =
X cos @

= tan6 to get|z = +r.tan 8|
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Solutions

Chapter 8, Part A

@ x=1.cosb =4cos(—g) =4(£) =12v/3
4

y =1.5in6 =4sin(——) -

: 2 lan2mil 2 (3 V3
y=rC5m9=§sm =—(—)

e
Or.= /2 +y?=/(-22+02=Va+0=V4=[2]
6=tan“1(§)=tan‘1(j05)=tan‘1(0)== ;

Notes: § = 180° because x < 0 and y = 0.

0= /[Ty = |(—VB) +V7 = V6T 2= \B= DD =212

9 =tan?! (%) — (_ijg) — i (—%) = 5?” = , |lz=+3

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.
©® User, = /x2 + y2 to get|z = x2 + y?|

(6 ) Use-i- = (S::;(; =tané to get% = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User. = /x2 + y2 toget|r? + z2 = 9|
@Userc =\/mtoget . = 2z|
© Use x =1.cosf and y = 7. sin 0 to get|z = 212 sin @ cos 6| or |z = 12 sin(26) |
Recall the trig identity sin(26) = 2 sin 6 cos 8.

Q) Factor: y?(x* + y*) = x*z%. User, = m to get Y212 = x222.

Square root both sides: y7. = +xz. Divide by x on both sides: z = + 2,
X

sin @
Use2 =
X cos @

=tanf toget|z = +r.tang|
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Solutions

Chapter 8, Part A

€ x =1.cos8 =4cos(—g) =4(‘/§) =2V3
4

y =1.5in6 =4sin(—§) =

2 21 2
O x=r1.cos6==cos===
§e 105 IU3

: 2 an2mil 2 3 V3
yzrcsmezgsm ( )

==2
©r=/2+y2=/(-2)2+02=Va+0=4=2]
9=tan“1(§)=tan‘1(_%)=tan‘1(0)== ;

Notes: 8 = 180° because x < 0 and y = 0.

O =77y = (Vo) +V = V6T =B = /DD =[22

= =8 B 2N =S5 [ AU T I 1y 1 ol 5 A
0 = tan (x)—tan (_\/g)—-tan ( ﬁ)" : =[150°] , |z=+3
Notes: 6 lies in Quadrant Il because x < 0 and y > 0.

© User, = /x2 + y2 to get|z = x% + y?|

(6] Use% = ::;3 = tanf to get% = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User, = \/x2 + y2 to get|r2 + z2 = 9|
© User, =\/mtoget T, = 2z|.
© Usex =r.cosfandy =1,sinf to get|z = 2r2sin6 cos f|or|z = r2 sin(26) |
Recall the trig identity sin(26) = 2 sin 6 cos 6.

@ Factor: y2(x? + y?) = x222. Use 1, = \/x% + y? to get y2r2 = x222,

Square root both sides: yr, = +xz. Divide by x on both sides: z = + 2=,
X

sin 8
UseZ =
X cos 6@

= tanf to get|z = +r.tan 6|
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Solutions

Chapter 8, Part A

€ x =1.cos8 =4cos(—g) =4(‘/§) =2V3
4

y =1.5in6 =4sin(—§) =

2 21 2
O x=r1.cos6==cos===
§e 105 IU3

: 2 an2mil 2 3 V3
yzrcsmezgsm ( )

==2
©r=/2+y2=/(-2)2+02=Va+0=4=2]
9=tan“1(§)=tan‘1(_%)=tan‘1(0)== ;

Notes: 8 = 180° because x < 0 and y = 0.

O =77y = (Vo) +V = V6T =B = /DD =[22

= =8 B 2N =S5 [ AU T I 1y 1 ol 5 A
0 = tan (x)—tan (_\/g)—-tan ( ﬁ)" : =[150°] , |z=+3
Notes: 6 lies in Quadrant Il because x < 0 and y > 0.

© User, = /x2 + y2 to get|z = x% + y?|

(6] Use% = ::;3 = tanf to get% = 1. Multiply by x on both sides: .

Chapter 8, Part B

@ User, = \/x2 + y2 to get|r2 + z2 = 9|
© User, =\/mtoget T, = 2z|.
© Usex =r.cosfandy =1,sinf to get|z = 2r2sin6 cos f|or|z = r2 sin(26) |
Recall the trig identity sin(26) = 2 sin 6 cos 6.

@ Factor: y2(x? + y?) = x222. Use 1, = \/x% + y? to get y2r2 = x222,

Square root both sides: yr, = +xz. Divide by x on both sides: z = + 2=,
X

sin 8
UseZ =
X cos 6@

= tanf to get|z = +r.tan 6|
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Solutions

Chapter 8, Part A

szrcc059=4cos(—%)=4 -—3)= 23
4

y =a:sin =4sin(—§) L

2 2T 2
©x=r1.cos6==cos===

3 3 3
—rsinB—zsinzn—z(s)— 3 z——l
Vil o T B o A |5 ) [ i 3

©:.— [Ty = [+ =VETO=Vi=[2

g —kany G) ="tant (_%) =tan—0)=[f]= ;
Notes: 8 = 180° because x < 0 and y = 0.

O =7y = (Vo) +VF = V6T =B = /DD =[22

0=t G) = tan"" (_ng) =Han, (—%) =|Z| = , lz =43

6

Notes: 6 lies in Quadrant Il because x < 0 and y > 0.
© User, = /x2 + y2toget|z = x% + y?|

(6] Use% = :):3 =tané to get% = 1. Multiply by x on both sides: [2y =x]

Chapter 8, Part B

@ User, = /x2 + y2 to get|r2 + 2% = 9|
© User. =\/mtoget . = 2z|
© Usex =7, cosf and y = sin 6 to get|z = 272 sin § cos | or |z = 12 sin(26) |
Recall the trig identity sin(26) = 2 sin 6 cos 6.

@ Factor: y2(x? + y?) = x?z%. User, = \/m to get 212 = x222,

Square root both sides: yr, = +xz. Divide by x on both sides: z = + 2%,
X

sin @
UseZ =
X cosf@

= tan6 to get|z = +r.tan 8|
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