/.

Kmon: % eBPF RYWARSS R AN NIZERREIE RS

5 i ARG TEAN PR A A RE s I 5], TR S5 H TRV 2B A A gl 2 M, s sk i
N T IRFERVE BRUIRSS R 40, RGUSE i Z R AR GUIRS I VEBETEAR, FFR IXEEARbrfF A
FF B AERE 2 T

G SE TR (1 cAdvisorl) R LA B R Guia E i R AN S bR 28000, AR
LR R TIRAE IBA SR (Fltn, CPU UMD o 5—MIEI T A, 4 Istio2, W] AMEHTE
ZITRRS, W1 L7 LRI RIEIR, (EARATH 2SR R R A B . o9 7B R G HTE L
TIRBZ AR, FATRE T Kmon, —/NMHTRUIRSs 25000 AR A& I R 458

Kmon W] DL AERA IR SR TR bR . BUAh, T DOSCERARRLEE (I A N P REFE AR (BT, RS0
FIECED « WAZ A TEARIRA T, B EATTRT DA Sk O 2 T RO B el L (451l 28 35 P livelock
5% limplock[14]) - H AT T B JLPAS AT GE R BUIX SLIR Z IR I vl 8, R ST TEiE 3k A3 PO A% 4 55
o PRt WS A FEAR NS TROIR 55 AT LR L

HIRCIATI RN strace3 Al LAiFE AIZ N I dEAR, (EEATidE 7 REGRITERE, T HX T A s
RGRUL, TEFIHIE. HAbJrik (0 OpenTelemetry4) 755U F P IR FFIRARED, IXakTIN
THHMOE R Kmon IE#EH] eBPF, ixXi& Linux WAZII— AN, FTUCREA A T 1
FEE . BRI T eBPF (UXESE, i eBPF BEGSIECHIN FHJEH0AAL, H5mlnt Tk 55 122 fk. Fl
Sl CE R g SR E A, PR Kmon 38 2R 1ML 285, Kmon mTUL A SR fabs
T FAF R B e b . ZBCEARE 1 A ST A FE AR A 75 0 AR S 55 v k) e 95 4 S 451
XA B SRS B AR e (1 R IR A S

Object File

o User Program

I

!;J:er Program
Userspace

Kernelspacr_) \erifier @ @
eBPF eBPF

\ Program Program
JIT

eBPF Program

1.eBPF FIFEA L5

YEN Linux WEZII—#87r, eBPF $24t 7 Mg & Linux WAZHIATRENE . RGHERIEE T LMEHE
PLABR K AT IR A% N 6 b5 . SRTT, ELBE4R'S eBPF A27 R AEMT. 1 BoR T eBPF AL,
AR . B, HRFENIZA CHEEHRS eBPF RS, AJ5H Ivm B HIm ikl — N R0, %
SO BOINE B R) HAK, FERE NZS S — M7 RN eBPF, X AMFE 738 % 7E F 7 23]
BAT . FEXTGSCHINERZ BT, WIS AT — NIERS LU R S AR S BIR Z. SRJE IIT xS0k
MFTRFEAL BN A6 4. W5, eBPF R M AL FP eBPF s EIAH EIE(E, H R RBAA
i B RS Y RZIEATI 5 S, B R eBPF R il ok i b PR RS 5 R B8 R K AT B T &

4’5 eBPF A ZIRMER), RS T EHM Linux PAAZFIVEICRS HB P IGIE S RN . FF R 3RS
WIRE 4. R, HILT —%% eBPF TH (W1 BCC5) , LAB/DIFK eBPF FEFFHIMERE . (HE0
eBPF I IR 554 LR Pk

-eBPF 2T TV 2 A Re BRI MRS fabs (0, 81-C SR feaktiit) . L,
FRAT 6 ZI0KE 3K AN RT3 (0 A B B B e N S T ER F FA

-eBPF FEFFiIR A2 Sk 55 A 45 0 PID FIXT NI AZ A bz, (Kb, eBPF ANREMIE X IR
RS . FATLIUR T eBPF &N IR ST FIAR & 23840 (B, I BCEARAL) HIRE

Xf T axEepkil, Chang 55 A[2]66 1 eBPF Xk 55 HIHT IFE AR 2E4T col- lect, {EAtATTEA =5 &1
JIRk55 HIAE4k . Shiraishi 55 N [3]i81d eBPF XUk LB 1 Bhas A s, (E At AT 1 8 42 100 H I 75 22

2

B B ER eBPF A2, X mtid ik 1 #iA it % . Viperprobe[1]52& — /MR S5 W EAELE, & R %
FAE bR 20 T AR e b

Infomation
about micorservice, Provider PP -
host, etc. . '/ \
1 1

.
, Patabase {

)
_,ﬁ,/

hook

Attached Filter \
condition .

program
eBPF program

] 2.Kmon (#1544

Kmon 1 I Al #14k T E., 40 flamegraph 1 heatmap 38 hin o] #0 4k =25 B A AR B FE bR i AT i
Kmon tfgfib . W& it F eBPF ZLp. RALE RS ZIRINE R, JRE RS SICEE# LA
HE— bR, WAkl eBPF MR eBPF F2FHIAT M, Xt eBPF A2 (TR bRt AT # i
So PSSR IR A B e b . SRR W], Kmon BEMS DLEUIR AN AR S SR ARALFEE Y145
b

ARSI TTHRAT ELAAN Y AR LA

B AMUE eBPF AEZIEAN mi-croservice JAE 1L, 1 HAEE REW BN M R R E S, W E
SCIHCE AR

—A2El, NECHARZGEH . BT RO I AL TR AR -
“ERZNNEATEIRG ARG, BRI, 8 TR IR AN AR

. shh

B, MG — RS I A R dahs, W ARERIE RIS B RAS . BUAE A 2 MR A 1
WTH. =Iekein, EAE—SRHE AR P R A . (22, R Ml TR MRAERSG — 1
ARG BAAREIN . Boh, A TR R EA R B, RAEE— MBI as & ira
FIFEAR

FR, — AW AR FE AR B) M2 R G0 mT AR B AT AL BE 22) 1) il 3 LA — S SR i Bt 1 41
T MR RAEEB, ARSI FE CPU BRIE, 1A HAR S A AEMER . AR R A
CPU i I Z& R S Wil B i j . HERE 22 1) R AR RV UK S8 n B R Se il B . i RIRATTRE IS 3R 15 1
IO RO AR BTN SCUMR I AAT AR, 3RAT T AT AT RE VR XA Y il AL

B=, — AT BRI R G LRI AR E A . k55 i — 254845, W0 TCP JHE
MIAEIR, AEARAMENCERK . AT DUE AR THORAER, s @i s wrr, S0 R #isn
PERESRZ, W1 Istio. Kmon AYBTHECAFAARS TR . BRItL, X587 i R AR 7 Aig A7 I R AR PP
TR /N

L. fRRIE

ARG L HIA

Kmon 7£ =A™Z T _F R RRSS, IX LIRS 72 SN 3L A R R ARH . X KA BT A R R
A LGEIT eBPF AU G o FEAIR A R R I 7 V2 2 1T, E e AR FE SR .] 2 BT T Kmon
2R o

SRAEE . BWEREBEIRIER, IR RIRL USSR DL ST I AN .

SRR - MBATANER eBPF F2F, JFiEIT eBPF ML S 17430 . AR AR 11 5T R 3
b

- eBPF 115 : eBPF Hb FEl /2 Py % 1 BE TSR A AU APt 454 76 Kmon i, B0 AT TR FH SR AR 425 1) eBPF
P REEEHIEE (FROAEHIED |, M eBPF F2F MRS IR & (FROVEIRED

-eBPF F2/F (s) : ENENIZ g T A — ey E (R R B, DLSCER AR it B0 2 s
Hi

AR o e AR RR . AR BT R e R o R 5 B K P

SN

B. Mt

BAtE (E 3 milERZEEE. &VIN eBPF EEWAZE R, BT UUR MR 2 =2
B, WUk EEAHE P e L E. R0, BT Kmon 2 ARG IH, KA LES eBPF
FEALXLLE B WIREA RN PID RIGIE S T HIREF, eBPF ANHIEE & Z =M MEFE: 17

SRS B B AR, Kmon 7 s AT DR . 47 S T AN 75 2 #8377 1Bk eBPF R 7.

Listen Port
and IP

proc/kallsys
proc/diskstats
/procl....

PID List
of Service

Provider ‘ Collector

PID List
Kernel Symbol Table

BARMEE B A AT PRI 2 1) e 24 R
PRALEIE 75 BN AR B T 15 BORMENT R . BIl0, eBPF A LUTE R T fil R 2% S A 1 4%
Hitk, JEATRT S KRB A, 0 AR UGRA AT EE, 1 B T35 WA 5 3£ 1
FER VMRS AT L, W —ANMRARE A MRS, $ROEE DOZON SRR SR M 5 3K
K I W AT 5 A R
CREERR
KA (B4 5 eBPF BT H. ‘& eBPF R INER BN #%, FHilid eBPF 11K 5 eBPF

FEFPRHATIRMG . IBEEAWE: 56 eBPF F2/7 AT A1 eBPF 25 U4 18 -

Collector

DeleteKey 192 | | Set Key On True
Add Key 143 True OxFFFF.....

Add Key 17106 Tru OxFFFF.....

,/:;fffff, ’_’,ﬁﬁlj > - f_'jﬁﬁé‘
. PID = . Switch’ - Stack .
eBPF Maps (control) eBPF Maps (data)

5

sys_x64_write
nano_sleep

B 4.t 28 1) 2 AR
flan, NSRS MR AN EE, RS RIS RIIE AN eBPF A2 7 U L i 4% PID B3 IS A ik
T HRLCRAESHRIACE, XK HERX AR S B h]] L. T EE, RESN
By B b U o . XM R AR AR (RrE . R HihEER) EH R A SETER R, A RAR
SRR PRI CA TR HONIE AR, IR RR I R 3% B 11 8% 47 ik /0 s e rh

D. eBPF i 1 eBPF 1%l

BPE Mane)
eBPF Maps
Kernel ‘] (control)

PID

Switch_
Switct

eBPF Maps
(data)

Stack

5.Kmon F{32 ill F F 4 14

N T Kmon BN — ARG R SE, eBPF 17 (K 5) 5 BLAE Uik 9% Blic B B s R 8 AT .

eBPF A2 /7 A 5 HAT NI —Fh 77 5 R BB S PR AN ST IN AR, IX7E BCC W ¥ FH . Bl 7 EAE AL 3
TR EIAEE (U0 LLVM. Clang &%) o i TS 2P, BRRAR A0 AT EE 53 2 1 eBPF
PR, &R AR K .

Kmon PA 55 —#77 kAT %, BIEIEHNE BA7 % 2] eBPF i . eBPF F2F7 R ik $:4T BRI
(P . X8 eBPF b VL S AR 208 1Y) eBPF i EIANIE] . DAL, FRATTKE & 40 il i 44 94
il AN B s . I XA I, eBPF W] LATEARE B R G BUBEAT TS 16, JkE 4 1 U A g PRI
B ANZ AT I 10 S o B 4

E.HH IR

WA (B 6) H5 SR SR MR bR R IX BB R ot D B@ i A S i W 2 SRR AN R e
LA 2 B4R PR (2R

- PID Stack Service
PIE; 1?1.06 Name
tack: . {"Duration™ 166334, "Sub""new | €COMM-
- newidle_balance 17106 idle_balance":{"Duration":xcxx, | andation
- pick_nect task_fair \\ "Sub™"00.....}...} service
- " 16631 |
L Exporter |
Duration: 16334 ns /"I
ServiceName: T
recommandationservice TN Va
PID: 16631 " InfluxDB < "_Elasticsearch *._
| - (. .) - ())
K 6. H H 28) 32 2 TAE AR

Kmon 7] LU i H AU B B AR SRR IR R . A R 2 ISRAY AT DL E L2 I R RV E L, iy

X EEFRBR A JZ IR SRR 58 AL 1] AR A 35 B o

Kmon Kt#8F5 0 =28 (K 7) . 5—32 TCP iHRKF. TCP 1 RAMMSS TR W, 2
JR 55 (0 S A I SO T . AEIXNZ I, Kmon Hili3k 784 TCP e fifiads, bl oo
WEIR .

- 01-15 XX:XX:XX|serviceA|172.16.XXX.1:80[172.16.XXX.5:80]1234XXXXns
- 01-15 XX:XX:XX|serviceB|172.16.XXX.2:80[172.16.XXX.5:80|2234XXXXns
- 01-15 XX:XX:XX|serviceC|172.16.XXX.3:80[172.16.XXX.5:80[3234XXXXns

Off-CPU Time: @

Disk Stat: ...
‘ Memroy:

B 7. =R IR TERESE bR o
BRRIGINGE R . SRS ER TCP KRB . B (75 s AR AR S 5L, Moy
MBI BRSO T B I 2 K. BV TEBMURS RGP EDENRERE .. ZNRRE

Bl NRFIEER R B, ATRLRAIIRS Z A6 R o RYEIEIBAE SN, RGURIE
F AT LAIT (A TP R A A S T R

5= R FAB AR EE (O FR bR bR — DA . AR CPUL IAE. L 10 S5 MG 4R bR . Kmon
[¥) eBPF F2/7 I0UEAAG 2% T BCC IIBIF, JH T — LB LLFF & Kmon 122 .

ATCP iR i

X HUR— M TCP B RIGHRIHI T . Thll R T34 BAZAR LI 47, Thl.ll &R T eBPF
TR A M A2) YA BRI e 335 SR IE 8 T A I R 126 1 S T o gl 25 55 — AN SO 38 g ¥ B[]
BRI (B 8) , FTLA eBPF N ZH4 £ Ao 14 R 508 FE KA 3 0

TABLE 1
HIGH-LEVEL INFORMATION

PID Identify receiver of requests.
Service name | Convert PID to service name for readability.
IP listen list | Identify server side for persistent connection.

TABLE II
HOOKED KERNEL FUNCTIONS
tcp_sendmsg Capture the time when TCP message sent
tcp_cleanup_rbuf and received, for latency timing.
security_socket_accept | Capture the time when TCP connection
tcp_close accept and close, for identify server
. . " side for short connections. v 4

Kmon RW%E%?UEE%E&H‘J%#& {HEARAE

KX 5y —ANERFYRZ G0 T 0. Kmon EFICT "B A1 "ORH MR TR YoE RDE
BIra), e RS A AT 1 2 "RGTH A

HR, EAES TRAMEER ., (RN EE L Kmon #5282 BTS2, Kmon SiABEIEAIE
R, SR ROz U W o 5 R . Kmon A, WURASHE EHLE RS 5 0m, E R 1P Al H B i%
TEAHLF AL IP M 5=

\\) tcp_cleanup_rubf-,

tcp_cleanup_rubf !

tcp_cleanup_rubf
- Latency

- e E E

K 8.TCP IR 5 .

B R SS h b il

M5 ahahtn] Losid TCP i R IEHE R & . B R — AN K AR A ER, HiEHR
YA H B2 TS o X DB ING, BUONAEAS R B) e b AN [) 4R S A
ROE A TR SRR . K E TCP R AIEHE 2 A b a5, T AT 25 2 e & .

C.4BkL R I VERESR B

HAbAEFr 5 Kmon L5 AR, B4 AR eBPF AL AR . ToLII AT ThLIV SR TRt
A1 eBPF 2P ISR i) — L6 B SE TR AR IR A5 B

P& JATEEE top drop 18— M. ERT DERIREB M ZF SRR, BN EFN
B AR A —ANHERR e mT DAY (I fmd R VR 2 0 TS (4 b, W0 tep connect AT tep accept.
A4 top drop & B H A IR, MIRATHLE R SLBL T tep drop.

CPU: 4F CPU If[a] 6 WJ LA 5T SRR A FELIT (Y N 2 AT 1] o 00 T2 A iE A2 BRA X AT 9 4077
FARA I 7. BB SRX ARSI SAIR &, BUONERER R 88 i 8, Kmon Rg f7 i il Le
iR HEIR RAEREE, MARSENRE (BRRENRESRA.) XNRIRT EZ7 S
AMNFERHERR, X FRERKEMNAE. 52 Flame Graph [JJE K&, Kmon Y4 HERBIESMOIR A7 . B4R
i AR B — AR, BRI RREEIN] . SRAESR VRN ARG (B, 5s) MYEEM, LUIBER
BERE AL, o

JelR 110 B=rp ="M rl IR 2 5abs, a0 1O KA E . Uiy 2R
“request "G IITRETIRIFHT, XA R E IS HL. BIERT LIS A "blk account io start " fX i
[F] &% 25 "blk account io done "fIH RIEERAH IR 1/O ZEIR . IXXHRAL 11O HEREIR A, it Hia2
FE[R]— I 18] 5 N BRIk 55 S B I AEAS [AL % b

TABLE III
HIGH-LEVEL INFORMATION

Configuration For changing Kmon’s behaviour.
PID Identify and filter program of monitoring.
Service name Convert PID to service name for readability.
Kernel symbol table | Convert stack address to symbol name.
Disk name Convert major and minor number of disk to name.
TABLE IV
HOOKED KERNEL FUNCTION
Type Hook descirbtion
Network tcp_drop Capture TCP packets or
segments that were dropped
by the kernel.

Block 1/0 blk_account_io_start Capture indicator about block I/O,
blk_mq_start_request | such as read-write type, throughput,
blk_account_io_done | latancy, I/O.

CPU activate_task Capture the on and off CPU
deactivate task counts, time and its stack for
specific program.

PABESLI T —/ M@ RS 1, LArk B P48 € RRE A% R (A tep connect, tep drop,
write, and read) FIEHBCE . — S PIZ R BN R SR A AT DUSBRER 7 AR A, Bildn, ST — AN
1 1/0 M5, $AT "k "B "5 EERTRER .

i - [==-1

V. LWKE

FATH 25645 I PUAS Linux B2 AL, Linux WAZ v5.4, 48— Kubernetes 225 . oAl 144 A "Hipster
shop "9, — MK A4 8k 22 JE AR IR 5 BT AT g ke . BB 10 R 3UIRSs, 7] DAAE _E i
YR e, KeAsmEeY A, IFSEEll. BAHEE R AEAE RSSO k6, BT IE A UG

SR ELHIFRbR. EFTE LI, K6 Y fEpl e 100 M .

Kmon 7 {814 Kubernetes LU] ClusterRole #2451~ 41 _E . ClusterRole /2 3k 15 245 1 Kmon
T HHRAT eBPF FIUSEE Kubernetes {58 (i 447 (8]. pod ZF%. IRSTAFR. 5 /55 MIRLR Firb 75
7o MRS Kmon 7 s B B35 IS 00 i — MR IR IR ST 20 % o

AVERETERR

10

N T At Kmon 5 sl B8R B BRI AE S DL, 26— SEIAE IR Kubernetes(K8s) 75) T T
NI4T Kmon 5 mif8fy, JF HAEH Exporter. Bl b T AEMHII LT, AT LAFRATAT DAL TR 45
SRR

1247 Kmon 1 S FEHLE S 10 MRS H11 3 /> ("paymentervice™. "emailservice "1 "frontend™) .

FESE IR, Linux PO R “top "# FHRIE Kmon 5 s B IEAEH

200 -
g 180
@ 160 -
S
= 1401 kmon
€ 120 sum of service
9
0
00:00 05:00 10:00 15:00 20:00 25:00 30:00
time
& 9. 284 ML micrioserive A1 Kmon 4 55 () CPU 1 FH .
127.5 4
125.0 4
122.54

—— kmon

7.57 sum of service

N
(4]
L

memory(MiB)
=] [+] =]
w
=]

00:00 05:00 10:00 15:00 20:00 25:00 30:00
time

P 10. 54 FEHLH micrioserive AT Kmon ¥ 55 () A 77 & .

9 A& 10 &R 7 Kmon 5w i) CPU MAFEAE L. CPU MM (ANVELHE eBPF f2F7) AT LA
ZAMEANTE, T A R AR e v o A e A A I EAT SE 2 (K ARk . JRA DR FE AR AR

FEPIE: 58— Kmon 7 s BRI BLfS A 26256 Kmon 78BN UIR 55 H P REREAT VRAG -
TEIX—H5r, Kmon BHBEEGAENL E, R T 4 Fidibs, /0IEMES (TCP iEREIR, EF1E
8O, B0 RS (RrkE, iHL R, RO, ThRETHEGEE (RGEM B M e, AR
CPU Infli] (HER, FREEINED o TbLV Ros | TCP 3 K& i) —Le g5 2R, Horb 0 5 i fa] k.
LEIRYEFNH

Kmon 5 S 7E 30 45T P [T 35 % 548 F & 2 9.55% (CPU fdi %) i1 616.11MB (AR 3
11

RN 1 X LI [A] F) 5 -

frontend

shippin
L

ad

emai.

payment

' currency
redis-cart

B 111 1 0 B SR B SRR AL T) SR A S
11 SR 1 X B2 S5 SO) I 2% Bt 0 1 SR A FR A AT AL . X T —A pod H SRS A Fi
brs o ETEIRSS, B 18 BOR T K6 TR A SN BPIRAS Jerh BORE R BEIRIN A1 SE A, SR T
G 12, BRR TAERMSERIHER P ALY BT CPU B [Hr4Ef [H] . BEAR (do nano sleep) [A]

5 (futex wait queue me) #1 epoll (poll schedule ...) AJ G S ECHIE 0.

VI. #HXTI1E

AN U HE 42

RN I W 2 HE SR 75 2 5 P R PP R AR Bl S, XSO\ T 85K T4 . Pythia[5]
L ETAE AT AN H LB 77 OB A4 I idE47 4% . Seer[6]F1 MicroRank[9]X s ik
55 N FH IS R AE B AT IRER DI &, DAVLRC RS A TAR[101 8RR AP 54l A 273 A sUR ¢
WA RIS IS . 52 BT TAEAEE, F P AT RAFE Komn B35 BT 3R45 4RI A%
R, AT EARATACE .

B.AE R A i HESE

LKA AZ NI T B, i ftrace10 Al sysdig[4], AT LASRAF BASEHL ERIANREEFedR, (HEAR
MESCEE RN IR 45 A5 P BT 19 5 1935 - Microscope[11438 T iR % RN 4 &85 5., DA
1 00 Al 55 4 L (1 A8 4K . Miicroscaler[12], [L3]4 T Ak 45 9 4% ok s 2 Bk IR 55 R e i) 484w SR

12

Microscope 1 Microscaler NREZR1F RAALHFF & .

Chang % A, [2]4 F DL Ak 434 B valltrace WA eBPF %0t o [7]7 (I 50 £ A BE AL AR
PRAERIR A AU L eBPF I Z% AR SCHR bR . XIS A SR i AR i b, T AN 3d RN A A5
52 ETHIWTFAHEL, Kmon SE3& & Zh ARSI, 7T LA R SRAFARRLE 4545 -

VII. ¥

N T ARG MR R E I R S8, AN T Kmon, —MET eBPF RS, ©
BRSSP RA AR, IR AL =R, X R GRS U AR T 1 -
AR, B CPU A ZRARAR, X R 55 Wi SN 8] FRISZ M AR /)N o

FEARK, BATHE AR IRE — M L0775, DR B3k TCP IER(EE . HAlx TCP
TR BRI AN E & R e R R R S5, Wi 2 BAS . Kmon HIPNAF B/ 2. JA1% &
THAT . — ARG libbpf FETIAE libbee &, XFEAEBATHME I NAEE A, T HEG
PR 3 AR B AN R IR R R AR R4 R

TABLE V
RECORD OF TCP MESSAGE SENDING
time service latency (ns) myIP:port peerlP:port
Jan 15, 2021 @ 21:56:13.206 emailservice 375170 172.20.1.132:8080 172.20.2.134:51614
Jan 15, 2021 @ 21:56:13.200 | shippingservice 676425 172.20.1.129:50051 | 172.20.2.134:50330
Jan 15, 2021 @ 21:56:13.199 cartservice 594035 172.20.1.132:7070 172.20.2.134:53604
Flame Graph
[]
B
(=]
i do_syscall..

__x64_sys_futex

inet..
[Zetian] __X64_sys.. do_futex
futedwait

lockzsis
[EIGEKE) do_nanosieep
Ischeddle
__schedule
pickonext_task fair

newidle_balance

12— A BEFERIAE CPU IS RIS KA o K BRI B S il H — AN P 2 G] el e] 1
AR EER 2 BEHLRIBE (1, Tt BRIBUTHES, e BTH R SR B R BT CPU IN (B UK AL, T2
BRI FIRERY B RHERIREE . ERXIRE Y, K BT CPU IR]2 1 eR 3 futex (A

) Al poll (M%) RIFHI.

13

)
W
S

off-CPU time(us)
~

20
00:00 00:30 01:00

01:30 02:00 02:30

03:00 03:30 04:00 04:30

K 13 B AL AR THIRIZATING, " IRSS "FE 4 23 Bh N B RBLINT T A (AERERRIRS)«

TABLE VI

RESPONSE INFLUENCE FOR MICROSERVICE IN 30 MINUTES

With Kmon Node

Without Kmon Node

Response-time(Avg)

361.97ms

348.97ms

Response-time(P95)

790.09ms

784.09ms

14

Kmon: An In-kernel Transparent Monitoring System for Microservice

Systems with eBPF

VIIl. INTRODUCTION

Attracted by the characteristics of high flexibility and fast de- livery, microservice is widely used in

many modern companies now, such as Google and Microsoft. To monitor and manage microservice
systems, system operators need to collect per- formance indicators that reflect system states and persistently
store those indicators in a database.
S. ome conventional monitoring tools (e.g., cAdvisorl) can help system operators to collect and
aggregate indicators. However, most of them only focus on basic metrics of resource usage(e.g., CPU
utilization). Another type of monitoring tools like Istio2 can monitor more indicators like requests latency
at L7 network layer, but they need to change the underlying infrastructure. To gain diversified metrics for
existing systems without modification, we propose Kmon, an in-kernel transpar- ent monitoring system for
microservice systems.

Kmon can capture conventional metrics more accurately. Furthermore, it can collect fine-grained
in-kernel performance indicators(e.g., the number of system calls). In-kernel indica- tors are useful because
they can reflect hidden problems in deep (e.g., livelock shown in 8l or limplock [14]). It is almost
impossible to find out these deeper problems with current monitoring tools since they cannot obtain
in-kernel events. Therefore, it is important to collect in-kernel indicators for microservice observability.
Although previous tools like strace3 can capture in-kernel indicators, they sacrifice the performance of the
system and need to aggregate manually for distributed systems. Other methods (e.g., OpenTelemetry4)
need to change the source code of the user’s program, which introduces additional complexity. Kmon
chooses to use eBPF, a component of the Linux kernel to collect metrics of programs without
instrumentation. It reduces the difficulty of using eBPF and enables eBPF to sense changes in application
layer, especially for the changes of microservice. Users can simply use it by write configuration and deploy

Kmon to each host. Then Kmon can automatically collect metrics and store them into databases. The

15

configuration specifies metrics users want to gain and server instances in microservice that need to be

monitored, which does not require modifying source or provide internal logic information of programs.

Object File
User Program

[]
w [J:er Program
Userspace

Kernelspacf‘ ' Verifier @ @
eBPF eBPF

Program Program

eBPF Program

Fig. 1. The Basic Architecture of eBPF.

As part of the Linux kernel, eBPF provides a possibility to extend the Linux kernel. System operators
can use it to capture in-kernel indicators at a low cost. However, write eBPF program directly is hard. Fig.
1 shows the basic architecture and procedure of eBPF. First, a developer should write eBPF code in C, then
use llvm to compile it into an object file, which will be loaded into kernelspace; Second, the developer
should write a program to load eBPF, this program usually running on userspace. Before the object file is
loaded, the kernel runs a verifier to ensure it cannot damage the kernel. Then JIT transfers the object file
from byte code to machine instructions. Finally, eBPF program and user program communicate with each
other by eBPF maps, the user program can extract kernel runtime information from maps, or ask eBPF
program to change the behavior of the kernel or itself by sending signals to maps.

Writing eBPF code is hard because it needs to understand the source code of the Linux kernel and
observe the rules of the verifier. The development environment is also complex. In recent years, some eBPF
tools (e.g., BCC5) have emerged to reduce the difficulty of developing eBPF programs. But it has two
challenges to monitoring microservice with eBPF as follows.

* The eBPF program collects many non-numerical indica- tors (e.g., stack address shown in 811-C) that

16

cannot be utilized directly. Thus, we must translate those unreadable non-numerical data to human-readable
indicators.

*The eBPF program captures the in-kernel indicators that are corresponding with the microservice
containers’ PID. Therefore, eBPF cannot sense the changes of microser- vices semantically. We must give
eBPF the ability to adapt to microservice and other high-level changes(e.g., user configuration changes).

For these challenges, Chang et al. [2] used eBPF to col- lect indicators for microservice profiling, but
they have not considered the changes of microservices. Shiraishi et al. [3] implemented dynamic sensors to
microservices through eBPF, but they need to create or delete eBPF programs when adjusting monitor
items, which causes extra overload. Viperprobe [1] is a microservices collection framework, which focuses

only on numerical metrics and ignores the non-numerical indicators.

Infomation
about micorservice,
host, etc.

I's

eBPF
program

hook

Attached Filter \
condition .

eBPF program

Fig. 2. The Architecture of a Kmon
Kmon use visualize tools like flamegraph and heatmap to increase readability for visualization
high-density and non- numerical indicators. Kmon consists of Provider, Collector, Exporter, and eBPF.
Provider collects the high-level informa- tion and sends them to Collector for further indicators trans-
formation. Collector controls the behavior of eBPF programs through the eBPF map, transforms and
aggregates indicators from eBPF programs. Exporter forms the indicators and stores them into databases.

Experiments show that Kmon can collect fine-grained indicators at a low cost.
17

The contributions of this paper can be summarized as follows:

« It not only enables eBPF to sense the changes of mi- croservice, but also enables it to sense other
high-level information like changes of user-defined configuration.

« It is an attempt at storing, handling and visualizing non-numeric in-kernel metrics for the distribution
system diagnosis.

« It unifies multiple in-kernel metrics in one system with the same data format, reduces the workload of
metrics collecting and translating.

IX. MOTIVATION

Firstly, capturing all types of indicators with a unified data structure can reduce the cost of indicator
aggregation. There are various types of monitoring tools now. There is no doubt they work well in some
specific fields. However, it is difficult to obtain a holistic view of a system with only one monitor tool.
Moreover, the output format of each tool is quite different. Therefore, it is hard to combine all indicators in
one view.

Secondly, a monitoring system that collects fine-grained indicators can help people find out more
problems. Here is an example of livelock: if a process gets stuck in a livelock, it still consumes CPU
resources while does nothing useful for its tasks. It cannot reflect a livelock problem only with CPU usage.
Livelock occurs between processes that will increase the number of context switches. If we can obtain the
number of context switching or the execution stack of each context switch, we are more likely to recognize
such a problem.

Thirdly, a system that does not need instrumentation can reduce the cost of development and
deployment. Some metrics in microservice, such as the latency of TCP messages, are hard to collect. They
can be captured via code instrument, or by deploying software that results in an additional performance loss
of users’ programs like Istio. Kmon is designed without any code instrument. Thus it has little impact on
the new applications and runtime applications.

X. APPROACH
A. System Architecture Overview
Kmon monitors microservices at three levels, which share the same architecture when implemented.

That is because all indicators can be similarly collected by eBPF. Before describing methods of monitoring

18

at each level, the shared architecture is introduced first. Fig. 2 illustrates the architecture of Kmon.

» Provider: It collects high-level information which are sent to Collectors for updating monitoring
strategy.

» Collector(s): They load eBPF program and communicate with them by eBPF maps. Each Collectors
are responsible for a type of indicator.

+ eBPF Maps: eBPF maps are the key/value-based storage structure in the kernel. In Kmon, they are
used to send control messages from Collector to eBPF programs (called control maps), and collect metrics
from eBPF program to Collector (called data maps).

» eBPF Program(s): They run and hook some specific events and functions in kernel to collects and
store data into data maps.

« Exporter: It receives the metrics from Collectors. Then it aggregates those metrics and sends them to

the database.

B. Provider

Provider (Fig. 3) is responsible for collecting high-level information. The initial eBPF is used at the
kernel level, so it is hard to capture high-level information, such as microservice information and
user-defined configuration. However, as Kmon is designed for microservice, it is necessary to provide this
information for eBPF. Without PID provided to identify the program in a container, eBPF does not know
which program it needs to monitor; With notice of configuration changing by a user, Kmon node can

change its monitoring strategy without restarting the node or the eBPF program..

19

Listen Port
and IP

proc/kallsys
proc/diskstats
/proc/....

PID List

of Service Provider | Collector

PID List
Kernel Symbol Table

Fig. 3. The high-level information probed by Provider for data parsing

Provider also needs to provide necessary information for Collector to parse data. For example, eBPF can
collect kernel stack in hook trigger, and stores addresses in form of unsigned long integer, which is
unreadable for humans, and hard to analyze for algorithms without a kernel symbol table. So if an
indicator contains kernel stacks, Provider should collect the kernel symbol table for Collector to convert
addresses to symbol names.
C. Collector

The Collector (Fig. 4) interacts with eBPF programs. It loads the eBPF program into kernel and
communicates with eBPF programs via eBPF maps. Communications contain two parts: to control

behaviors of eBPF programs and to receive data collected by eBPF programs.

Collector sys_x64_write
nano_sleep
DeleteKey 192 | | set Key On True
Add Key 143 True OxFFFF.....
Add Key 17106 Tru OxFFFF.....
— — T o L -
- PID_ " Switch. Stack
eBPF Maps (control) eBPF Maps (data)

Fig. 4. The primary workflow of Exporter
For example, if services are deleted or created, Collectors should immediately notify eBPF programs
of chang- ing their monitoring PID list. If a user changes configurations that are relative to some Collectors,

these Collectors need to reflect these changes to control maps. For the latter, Collectors receive data from

20

data maps. This raw data (bitmap, bytes data, address, etc.) are usually human unreadable, so Collectors
should convert them to an appropriate form. These indicators are sent to Exporter and stored in databases

D. eBPF Maps and eBPF Program

Kernel

(control)

} eBPF Maps

truct rq #Finish_task_switch(struct task_struct #prev)

PID
_raleases(rglock —

r
1
I e
struct rq *rq = this_rq() I "t
truct mm_struct *mm = rq-'prev_mm PID in 1
g ev_state; - —— —_—
PID Maps Switch
o L S

eBPF Maps

1
1
@ i | (data)
- - .
Stack

Fig. 5. The control maps and data maps in Kmon

To make Kmon a flexible system, eBPF programs(Fig. 5) need to adjust their behaviors when
microservice or configu- ration changes.

One way for eBPF programs to adjust their behavior is to recompile and reload them, which are used
in BCC. It needs to install the heavy compiling environment (e.g., LLVM, Clang, etc.) in production
environment. As microservice changes frequently, recompiling of eBPF program for each change causes
much overload.

Kmon adjusts in another way, namely storing the control message into eBPF maps. eBPF programs
check maps for choosing executive branch. The usage of these eBPF maps is different from eBPF maps that
store collected data. Therefore, we name the former control maps and data maps respectively. In this way,
eBPF can be precompiled before deployed in the system, avoiding the heavy compiling environment and
the recompilation overload in run-time.

E. Exporter
Exporter (Fig. 6) sends indicators collected by Collector to databases. Exporter supports different

databases by transfer data forms to meet the requirements of databases.

21

rvi
PID: 17106 PID Stack sNeamcee
Stack: . {"Duration":166334, "Sub":"new recomm-
- newidle_balance 17106/ idle_balance":{"Duration"xxxx, | andation
- pick_nect ta sk_fair — _--""\\ "Sub™""xxxx....}....} service
= asmas -\',Il 16631
L Exporter |
Duration: 16334 ns /;‘H
ServiceName: o
recommandationservice py v
PID:16631 " InfluxpB < -Elasticsearch*. "~

Fig. 6. The primary workflow of Exporter
XI. IMPLEMENTATION OF IN-KERNEL MONITORING

Kmon can collect various types of indicators via its archi- tecture. There are too many types to decide

which should be focused on when monitoring, so a hierarchy of these indicators for locating the problem is

helpful.
Kmon classifies indicators into three categories(Fig. 7). The first is TCP request level. TCP requests is

common in microser- vice and many abnormal detecting algorithms for microservice depend on it. In this

level, Kmon captures indicators of each TCP connection such as quaternion and latency.

- 01-15 XX:XX:XX|[serviceA|172.16.XXX.1:80[172.16.XXX.5:80[1234XXXXns
- 01-15 XX:XX:XX]|serviceB|172.16.XXX.2:80|172.16.XXX.5:80|2234XXXXns
- 01-15 XX:XX:XX|serviceC|172.16.XXX.3:80|172.16.XXX.5:80|3234XXXXns

®©

Off-CPU Time:
N Disk Stat:
‘ . Memroy:

Fig. 7. Three levels of performance indicators.
The second level is the topology level. Dynamic service graph are formed by TCP request data. Nodes

in the graph represent service instances, and the link between nodes reflects flows of recent network
22

requests. It aggregates information of each host from the whole microservice system. Data at this level is
intuitive for humans and algorithms to identify the relation between services. According to the latency
information and topology, it is convenient for system operators to estimate if there is an abnormal node in
the graph.

The third level contains other fine-grained indicators for fur- ther investigation. It includes metrics
relative to CPU, memory, block I/O, etc. The source code of eBPF programs for Kmon refer to BCC
examples, with some changes to match Kmon architecture.

A. TCP Request monitoring

Here is an example of collecting indicators of TCP request. Thl. | shows what should be provided by
Provider and Tbl. Il shows what kernel function should eBPF program to moni- tor. The request latency is
calculated by subtracting the first received message timestamp from the last sending message

timestamp(Fig. 8), so eBPF should hook relative function call to capture the time.

TABLE I
HIGH-LEVEL INFORMATION

PID Identify receiver of requests.
Service name | Convert PID to service name for readability.
IP listen list | Identify server side for persistent connection.

TABLE II
HOOKED KERNEL FUNCTIONS
tcp_sendmsg Capture the time when TCP message sent
tcp_cleanup _rbuf and received, for latency timing.
security_socket_accept | Capture the time when TCP connection
tep_close accept and close, for identify server
. . " side for short connections. verm 4

Kmon only collects requests sent to servers, but it is difficult

to distinguish the direction after a socket being accepted. Kmon uses the hook about “accept” and
“close” operation to decide short connection direction, which assumes that the server-side executes the
“accept” system call.

However, it is not suitable for a persistent connection. If a connection was made before Kmon has been

23

deployed, Kmon cannot sense it. Hence Provider should collect the listen port infomation. Kmon assumes

that if the local host is on the server-side, its IP and port should be in the local host’s IP listening list.

— -

"

-Latency

- - m, o omomom

Fig. 8. TCP latency calculation.

B. Service Topology Monitoring

Service topology can be constructed by the data from TCP requests. It searches all requests that occur in
a period, draws node and edge according to its source, and destination. It is a dynamic topology as different
topologies are constructed in different periods, which is suitable for microservice for its frequent changes.
The data from TCP requests to construct topology is sufficient, so no more Collectors are needed.

C. Fine-grained Performance Indicators

Other indicators share the same architecture of Kmon, but with different eBPF programs and Collectors.
Thbl. 1l and Tbl. IV show the information about some implemented indi- cators that the Provider and the
eBPF program collect.

Network: we choose tcp drop as an example. It can capture each packet dropped by kernel, with a stack
for each dropping. It can debug high-rate of drops. There are many indicators about network like tcp
connect and tcp accept. We introduce tcp drop because others are similar and we have only imple- mented
tcp drop now.

CPU: Off-CPU time6 can capture what and when a process is blocked. It is useful to analyze details of
the process’s or kernel’s behaviors7. Because capturing this indicator has high cost as tracing scheduler is
called frequently8, Kmon just stores data for those who let processes go to “sleep” state instead of each
scheduling (While it is still high-cost.). This indicator needs to store stacks of each schedule, which need

high memory. Inspired by Flame Graph, Kmon translate and stores stack in trees. Each function call is a

24

node of the tree with its total durations. Collector constructs trees for each interval (for example, 5s) to
trace changes of a process.

Block 1/0: Many metrics can be captured from three hooks in Fig. I11, such as 1/O type and throughput.
These metrics are mainly gain from pointer of ”request” struct, which is the parameter of hooked function.
It can also capture I/O latency by subtracting timestamps of “blk account io start” from times- tamps of
“blk account io done” It is useful to optimize I/O performance, for example, placing service instances that

always write at the same time to different machines.

TABLE III
HIGH-LEVEL INFORMATION
Configuration For changing Kmon’s behaviour.
PID Identify and filter program of monitoring.
Service name Convert PID to service name for readability.
Kernel symbol table | Convert stack address to symbol name.
Disk name Convert major and minor number of disk to name.
TABLE IV
HOOKED KERNEL FUNCTION
Type Hook descirbtion
Network tcp_drop Capture TCP packets or
segments that were dropped
by the kernel.

Block 1I/0 blk_account_io_start | Capture indicator about block I/O,
blk_mq_start_request | such as read-write type, throughput,
blk_account_io_done | latancy, I/O.

CPU activate_task Capture the on and off CPU
deactivate_task counts, time and its stack for
specific program.

We also implement a generic system call hook to count the number of specific kernel functions
called(e.g. tcp connect, tcp drop, write, and read) specified by user. Some kernel functions like system calls
can reflect the type of program, for example, the number of execution “read” or “write” may be high for an
1/0 frequent service.

XI.EXPERIMENT SETTING

Our experiment uses four Linux virtual machines with Linux kernel v5.4 to make up a Kubernetes

25

cluster. we use “Hipster shop”9, a cloud-native microservices application demo from google as a
benchmark. It compromises 10-tier microservice on which users can browse items, add them to the cart,
and purchase them. We change its load generator to k6, which can get more metrics after load having been
generated. The load of k6 is set to be 100 users in all experiments.

Kmon node is deployed to each host via Kubernetes with a new ClusterRole. ClusterRole is necessary to
get permission for Kmon node in a container to execute eBPF and collect information of Kubernetes (e.g.,
namespace, pod name, service name, nodes, etc.). The resource usage of service and Kmon node is
recorded by a metric server.

A. Performance metrics

To estimate the resource usage of an indicator of a Kmon node, the first experiment runs Kmon node
program manually without the help of Kubernetes(K8s), and with the Exporter disabled. It avoids the
network overload of storage, so we can focus on the indicator monitoring part.

The host which runs the Kmon node contains 3 of 10 services (“paymentservice”, “emailservice”, and
“frontend”). In the first experiment, Tools “top* in Linux is used to measure the resource usage of Kmon

nodes.

200 -
180 -
160 -

1401 [kmon

millicore(m)

120 - sum of service

198

OT P T P TP WU N Y PV P VR VRN VWY PO P et e

00:00 05:00 10:00 15:00 20:00 25:00 30:00
time

Fig. 9. CPU usage for micrioserive and Kmon node in single host.

26

127.5 A

125.0 A

122,51
—— kmon

7.57 sum of service

=] o =]
N w
n o

1 1

memory(MiB)

00:00 05:00 10:00 15:00 20:00 25:00 30:00
time

Fig. 10. Memory usage for micrioserive and Kmon node in a single host.

Fig. 9 and Fig. 10 show the CPU and memory usage of the Kmon node. The CPU usage (exclude
eBPF program) is negligible while memory usage is relatively high. It is possible to have more
optimization for memory usage. We will do this in the future.

After measuring the resource usage of one Kmon node, it is necessary to estimate Kmon’s
performance in the whole microservice. In this part, Kmon is deployed in each host, with 4 kinds of
indicators collected, which is Network (TCP request latency, drop message), Block 1/O state (throughput,
count, type, stack), Function counter (system call “write” and “read”), and Off-CPU time (stack, duration).
Thl. V shows some of the results of exported TCP request data, which contains timestamp, latency source,
and destination.

The average resource usage for Kmon node in 30 minutes is 9.55% in CPU usage) and 616.11MiB in

Memory usage. Tbl. VI shows the influence in response time.:

frontend

shippin
L

payment

' currency
redis-cart

Fig. 11. Topology constructed by indicators collected in 1 minutes.

27

Fig. 11 shows the topology visualization of requests by network data collected from this part of the
experiment. For a more fine-grained indicator in a pod, like “recommendation service”, Fig. 13 shows the
state at the beginning of K6 starts to generate load. The program in the pod sleeps longer and more
frequently. Combine with Fig. 12, which shows the duration when the program is off-CPU in each type of
stack. Sleep (do nano sleep), synchronize (futex wait queue me) and epoll (poll schedule ...) may cause its
increasing.

XII. RELATED WORK

A. Intrusive Monitor Framework

The intrusive monitor frameworks need to change source code or binary file of the user’s programs,
which introduces addtional overhead. Pythia [5] focuses on where, what, and when to instrumentation in a
distributed application in an au- tomatic way. Seer [6] and MicroRank [9] instrument trace API to
microservice applications for request information to match patterns of services. The work [10] increases
observability by inserting API hooks into source code for distributed system diagnosis. Compared with the
previous works, users can get the detailed monitor information with the help of Komn without any
instrumentation.
B. Non-intrusive Monitor Framework

Contemporary in-kernel monitoring tools such as ftracel0 and sysdig [4] can gain fine-grained
indicators on a single host, but they are hard to collect and aggregate indicators from all nodes in
microservice environment. Microscope [11] captures the network connection information of microsercice
systems to monitor the changes of service dependency graphs. Microscaler [12], [13] uses the Service Mesh
to monitor metrics of microservice systems. However, Microscope and Microscaler cannot get the
system-lever metrics.
Chang et.al., [2] use the Bayesian model to analyze data collecting by eBPF collected by valtrace. The
study in [7] uses the random forest model to analyses network-related metrics from eBPF in virtual
machines. Both studies are focus on algorithms rather than fitting dynamic environment. Compared with
the previous works, Kmon is more suitable for a dynamical microservice environment and can gain fine-

grained indicators efficiently.

28

XIV. CONCLUTION

To create a transparent monitoring system with fine-grained indicators, we introduce Kmon, an eBPF
based system. It transparently captures various types of indicators and organizes them in three levels, which
is convenient for system operators and algorithms. Experiments show it has low CPU usage and little
influence on service response time.

In the future, we aim to find a better way to capture TCP connection information on fewer
assumptions. The current assumption of TCP requests is not suitable for some specific type of service like
Message Queue. The memory usage of Kmon also needs to be reduced. Two directions are considered. One
is to use library libbpf instead of libbcc, which uses less memory in run-time with portability, The other is

to find a better representation of indicators to compress their size.

TABLE V
RECORD OF TCP MESSAGE SENDING
time service latency (ns) mylP:port peerlP:port
Jan 15, 2021 @ 21:56:13.206 emailservice 375170 172.20.1.132:8080 172.20.2.134:51614
Jan 15, 2021 @ 21:56:13.200 | shippingservice 676425 172.20.1.129:50051 172.20.2.134:50330
Jan 15, 2021 @ 21:56:13.199 cartservice 594035 172.20.1.132:7070 172.20.2.134:53604
Flame Graph
(]
[]
= [] ex
[| do_s..

do_syscall..
__Xx64_sys_futex
(fcPEEl __X64_sys.. do_futex
futexzwait
[IGEkE do_nanosieep [EEXIWAISGUEUMENIN <chedule_hrtimeout_range cl.

do_..

__schedule

newidle_balance

Fig. 12. The Flame graph of off-CPU time of one process. A flame graph can reflect how a
program spends its time. Each bar is at random warm colors and ordered alphabetically, the
top one shows the duration of off-CPU time, and beneath is its ancestry. The Y-axis of the bar
shows stack depth. In this picture, most of the off-CPU time is obtained from function futex
(synchronize) and poll (network).

N
N
E

&

=3

off-CPU time(us)
~
2
w
S

N
N
E]

o)
00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 count

=)
2
1=}
=}

29

Fig. 13. Heatmap of off-cpu time (only with sleep state) of service “recommendation service”
in 4 minutes at the start of load generator running.We can easily notice the increase of

off-CPU time.

TABLE VI

RESPONSE INFLUENCE FOR MICROSERVICE IN 30 MINUTES

With Kmon Node

Without Kmon Node

Response-time(Avg)

361.97ms

348.97ms

Response-time(P95)

790.09ms

784.09ms

30

